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ABSTRACT  

Welding Fume Exposure and Lung Cancer: Evidence of lung toxicity 

and tumor promotion from in vivo studies in A/J mice 

Lauryn Falcone 

Welding fumes were recently reclassified as carcinogenic to humans (Group 1) by the 

International Agency for Research on Cancer (IARC) based on sufficient epidemiological 

evidence and limited evidence in animals. It is estimated that 11 million workers worldwide weld 

full-time, and an additional 110 million have had some type of welding-related exposure. 

Welding exposures are complex because of the diversity of welding modalities used in the 

workplace; these modalities include exposures to non-carcinogenic and/or carcinogenic metal 

containing fumes.  

The objective of this dissertation was to determine which welding fumes and their 

component metals are the most toxic and have the greatest tumorigenic potential. Male A/J mice 

received intraperitoneal injections of corn oil or the initiator 3-methylcholanthrene (MCA;10 

µg/g) and one week later were exposed by whole body inhalation to air or gas metal arc-stainless 

steel (GMA-SS), GMA-mild steel (MS), or Copper-Nickel welding aerosols for 4 hours/day x 4 

days/week x 8-9 weeks at a target concentration of 40 mg/m3. Lung nodules were enumerated at 

30 weeks post-initiation. GMA-SS and GMA-MS fumes significantly promoted lung tumor 

multiplicity in A/J mice initiated with MCA (16.11 ± 1.18; 21.86 ± 1.50, respectively) compared 

to MCA/air-exposed mice (7.93 ± 0.82; 8.34 ± 0.59, respectively). Cu-Ni welding aerosols 

significantly decreased lung tumor multiplicity compared to MCA/air controls (7.11 ± 0.93 

tumors vs. 15.57 ± 0.75 tumors, respectively). A separate group of mice also received 

intraperitoneal injections of MCA or corn oil and beginning one week later were exposed to NiO, 

Fe2O3, Cr2O3 + CaCrO4 or sham once per week for 5 weeks via oropharyngeal aspiration. 
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Component Fe2O3 was the only metal to promote lung tumors in A/J mice. To study lung 

pneumotoxicity of the welding fumes and their component metals, mice were given a single 

bolus low or high dose of NiO, Fe2O3, Cr2O3 + CaCrO4, total GMAW-SS fume or sham at 

sacrificed at 1 day, 7 days, 28 days, and 84 days post-exposure. An additional group of mice 

were exposed to GMAW-MS via inhalation for 4 hours/day for 10 days at a target concentration 

of 40 mg/m3 and sacrificed at the same time points. Bronchoalveolar lavage fluid was collected 

and analyzed for markers of inflammation and cytotoxicity. GMA-SS fume was more 

pneumotoxic than the individual components. Component Fe2O3 was the most toxic of the metal 

oxides. Inhalation of GMAW-MS did not induce inflammation or cytotoxicity in A/J mice.  

In conclusion, these studies demonstrates that inhalation of GMA-SS and GMA-MS 

welding fume as well as Fe2O3 promote lung tumor formation in vivo and provides support for 

the epidemiology that shows welders, using mild and/or stainless steel, are at an increased risk 

for lung cancer. It is unclear why Cu-Ni welding aerosols decreased tumor size and number. 

However, the findings in this dissertation provide a framework for future epidemiological, in 

vivo, and in vitro studies of welding fumes to further understand the association between lung 

cancer and welding.  A better understanding of which welding fumes and metal oxides are most 

toxic or tumorigenic could lead to more appropriate worksite regulations and even the 

development of safer welding consumables which lack the more dangerous components.  
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Chapter 1: Introduction 

Overview of Welding 

For centuries, the ability to join metal parts has been a crux of our society.  Prior to the 

late 1800s, the only method to metallurgically connect metals was a laborious process known as 

forge welding, in which metals were heated and repeatedly pounded until a bond was formed [1]. 

It is unknown exactly when forge welding began. However, it is believed that the shaping of 

metals which formed the foundations for welding started in ancient tribes many centuries ago.  

There is also some evidence that ancient Egyptians used a type of welding similar to gas welding 

today by which they used a blowpipe and flames to melt the surface of metals [2]. By the late 

1800s, increased electrical power allowed more methods of welding to emerge, including arc 

welding, resistance welding, and oxyacetylene welding [1-3]. It is believed that an Englishman 

named Widdle was the first person to intentionally weld two metals, fusing two small pieces of 

iron in 1865 and receiving the first patent for a welding process[1].  

By the early 1900s, arc welding, the most popular and commercially useful method of 

welding, had made its way to the United States [1]. Four manufacturers of arc welding 

equipment were established by 1917, including Lincoln Electric Company, which is still the 

largest supplier of welding equipment today. The popularity of welding continued to grow over 

time, but the first major demands on the industry came during World War I, with a sudden need 

for fleets of ships, aircraft and war supplies. Welding allowed for faster production of these 

transportation devices compared to earlier methods. After the war, welding was still not used 

extensively, but with the approach of World War II, the need for welding picked up again and 

welding became increasingly important [1].  

 Today, our ability to fuse metals has led to the production of everything from ships, 
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automobiles, and bridges to mp3 players, medical devices, and computers [1-3]. When it comes 

to fastening or connecting metals, many options are available including simple bolts and screws, 

adhesives such as tapes and glues, riveting, brazing, soldering, and welding.  Each method has its 

advantages, with some techniques like bolts, screws, and adhesives requiring only basic skills but 

providing a less durable union [4]. Welding, brazing, and soldering are similar processes in that 

they are three stronger methods of joining metals and require more skill to be performed.  

Depending on the strength of the union desired and the types of metals being joined, one process 

may be preferred over another.  Soldering and brazing are very similar processes except that 

brazing is performed at higher temperatures above 450˚C while soldering occurs at lower 

temperatures below 450˚C [4]. Unlike soldering and brazing, which only melt the filler metal, 

welding is a true fusion process as it involves melting of both the work pieces and filler material. 

Thus, welding has the advantage of being the strongest possible method of joining metals, 

making it a highly utilized process in the construction and manufacturing industries.  

The American Welding Society was founded in 1919 with the mission of advancing the 

science, technology, and application of welding processes worldwide. It is estimated that there 

are more than 110 million workers across the world that receive some sort of welding exposure, 

whether they are full–time or part-time welders or employed in other industries such as 

construction, farming, pipefitting, ship making, or automobile services [4, 5]. The welding 

industry is expected to grow 4% from 2014 to 2024, especially as the workforce ages and 

infrastructure degrades and needs to be replaced and repaired [4, 6]. In 2010, the manufacturing 

industry employed 61% of all welders, followed by the construction industry (11%), wholesale 

trade (5%), and maintenance and repair (5%) [4]. Welding is a popular career choice as the skills 
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of a welder are versatile and transferable; a welder who gets laid off in the manufacturing 

industry, for example, may easily find work building pipelines in the oil and gas industry [6].  

Nearly 80 types of different welding processes exist but all welding processes are similar 

in that they generally require high heat and a filler material which is usually a stick or wire [3, 4]. 

The vast majority of metals are fused by an electric arc welding process. It is believed that the 

electric arc was discovered by Sir Humphrey Davy in 1801 when experimenting with 

electricity[1]. Davy discovered that this arc could be maintained and created with a high voltage 

electric circuit and noticed that it gave off significant amounts of light and heat. In arc welding, 

high temperatures of 5,000˚C or more melt the joint between two metal work pieces as well as a 

filler material placed between them [4]. This extremely high heat capable of melting metals is 

produced by the electric arc which is established between the work pieces and a consumable wire 

electrode. As temperatures cool, the bond solidifies, firmly fusing the work pieces together. The 

bond created by welding is unique in that it is a mixture of the metal work pieces and the 

electrode filler material, making the bond extremely strong as it retains the strength of both 

initial metal parts [1, 4]. This bond is unique to welding, as brazing, soldering, and adhesives are 

considered non-fusion methods of joining metals since the bond is not a mixture of both work 

pieces and filler material [4].    

Types of Welding Processes and Welding Fumes 

Welding processes are largely classified as either arc or non-arc welding, with arc 

welding being considerably more popular. Specific types of arc welding include shielded metal 

arc welding (SMAW), gas metal arc welding (GMAW), Flux-cored arc welding (FACW), gas 

tungsten arc welding (GTAW), submerged arc welding (SAW), and plasma arc welding (PAW) 

[7]. With arc welding, some type of shielding of the weld is needed, because the metals at high 

temperatures will chemically react with nitrogen and oxygen in the air, creating oxide and 
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nitrides which would weaken the strength and toughness of the weld [1]. Shielding may be 

provided by a gas, vapor, or slag which serves to prevent contact of the molten weld puddle that 

is created with air. Non-arc welding includes resistance welding, oxyfuel gas welding, solid state 

welding, and high energy density welding. Choice of which type of welding to use depends on a 

variety of factors including desired strength of the weld, cost, speed of welding, and position and 

thickness of the material [4].  

 SMAW is also known as stick welding or manual metal arc (MMA) welding.  It the most 

commonly used arc welding process as it is the cheapest and simplest method of welding [4]. As 

the name suggests, in SMAW a welder manually guides an electrode along the metal to be 

welded after creating an arc between the electrode and the metal [3]. The electrode is coated with 

a material which decomposes under high heat and shields the weld puddle from reacting with the 

atmosphere. Unlike some other types of welding, no pressure is used in SMAW and the filler 

material is provided by the consumable wire electrode. GMAW, also known as metal inert gas 

(MIG) welding, is a method commonly used commercially as it can be automated and performed 

at higher speeds [1, 4]. In GMAW, an electric arc is established between the work piece and a 

consumable wire electrode. Unlike SMAW, the electrode in GMAW is bare rather than coated, 

so the weld is instead protected by an external gas source such as argon, helium, or carbon 

dioxide. A disadvantage of GMAW is that it produces a significant amount of welding fume, 

primarily from the consumable wire electrode [4]. FCAW is similar to GMAW in that an arc is 

again established between the work piece and a consumable electrode and in both processes a 

significant amount of fume is produced. However, in FCAW, shielding is primarily provided by 

a flux within the electrode as well as a central core which may contain scavengers, slag, 

deoxidizers or other shielding agents, rather than a coating on the electrode or solely an external 
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gas [1, 4]. Sometimes, additional shielding will also be provided by an external gas. In GTAW, 

an arc is still established between the work piece and electrode, but the electrode is non-

consumable tungsten and serves only to maintain the arc rather than shield the welding process. 

Shielding instead is provided by external gases.  Pressure is sometimes used. Unlike GMAW and 

SMAW, very little welding fume is generated during GTAW. SAW is similar to GMAW in that 

an electric arc is established between the work piece and a bare electrode. It is the ideal welding 

process for fusing thick plates as it provides a high metal deposition rate and is among the fastest 

welding process [1]. Unlike other welding processes, the electric arc is not visible and shielding 

is provided by a granular flux which covers the work piece. This results in a much more 

contained welding process, without the production of sparks, radiation, and fume which is 

generated in other welding processes. The filler material is provided primarily by the bare 

electrode and pressure is not used. Lastly, PAW is most similar to GTAW in which an arc is 

established between the work piece and a non-consumable electrode. While the arc supplies heat, 

unlike with other welding processes, the arc is not diffused but rather forced through a small 

hole, constricting the arc [1, 4].  

 Despite the overwhelming popularity of arc welding, other types of non-arc welding are 

sometimes employed, such as resistance welding, oxyfuel gas welding, solid state welding, and 

high energy density welding[1, 4]. Resistance welding refers to processes such as spot welding, 

induction welding, and flash welding in which the weld is created by heat provided from 

resistance to the flow of an electric current as well as pressure. Resistance spot welding is 

sometimes utilized in the production of automobiles or aircraft as it can be performed repetitively 

at high speeds to product a joint similar to a rivet although significantly stronger. In oxyfuel gas 

welding, a nozzle directs gas at the work piece surface and a combustion process between air, 
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gas, and oxygen joins the metals. This type of welding generates some fume but not as much as 

some of the arc welding processes as it is performed at lower temperatures. However, oxyfuel 

gas welding is infrequently used in the industry as it produces a lower quality weld compared to 

arc welding. Solid state welding includes friction welding, diffusion welding, hot and cold 

pressure welding, ultrasonic welding, and explosive welding. It is unique in that no melting 

occurs and metals are instead joined by pressure and occasionally heat. However, solid state 

welding is very expensive and therefore not utilized for large production jobs. Lastly, high 

energy density welding includes processes like electron beam welding and laser beam welding. 

In these types of welding, lasers or a stream of electrons create high temperatures which allows 

melting and vaporization to fuse work pieces. However, like solid state welding, high energy 

density welding is very expensive and not widely used commercially [1, 4].   

Welding fumes are created as a byproduct of many of the welding processes, particularly 

arc welding [4].  The welding fume composition varies depending on the specific type of 

welding process. However, it is typically composed of a mixture of vaporized metal oxides from 

the electrode and/or flux material which are small enough in size to be respired and reach the 

alveoli of the lungs [4]. Gases produced during welding can vary depending on the type of 

welding process and other conditions. Ozone can be formed during welding by reaction of 

atmospheric oxygen and UV radiation from the welding arc [4]. While the rate at which ozone 

can form varies greatly with the materials being welded, the shielding gas used, the welding 

process being performed and properties of the welding arc, ozone is generally unstable in the 

atmosphere [8]. The metal oxides of the fume also increase the rate of degradation of ozone. 

Thus, while ozone is well known to be a respiratory irritant, production during welding is 

typically negligible. CO can also sometimes be formed during the welding process by reduction 
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of CO2 at high temperatures or from decomposition of compounds coating the electrode [4]. CO 

is a colorless, odorless gas which can be deadly if inhaled. NO is also sometimes formed during 

welding when high temperatures oxidize atmospheric nitrogen. NO is irritating to eyes, lungs, 

and mucous membranes [4, 9].   

Hazards of Welding 

Welders are exposed to a number of health and safety hazards owing to dangerous work 

environments and exposures from the welding process [6].  Welders may work indoors or 

outdoors, in confined or wide open spaces that may be well or poorly ventilated, and can 

sometimes be exposed to inclement weather. When welding in confined spaces lacking proper 

ventilation, welding fumes can rapidly accumulate, pushing out breathable air and causing 

suffocation of the welder [1]. When working outdoors, welders may work on scaffolds or 

platforms high above the ground. Some jobs involve heavy lifting and frequent bending and 

stooping down in uncomfortable, awkward positions [3, 6]. In addition to a dangerous work 

environment, welders work with extremely hot materials and strong light [1, 6]. Electrical shock 

and even potential explosions if combustible gases are mishandled or if welding sparks hit 

flammable materials are possible dangers of welding [1, 3]. Work areas should be kept very 

clean as even dust particles have been known to become volatile in the heat of the arc, quickly 

oxidize, and cause a flash fire or explosion[1]. Because of these hazards, welders have higher 

rates of injury and illness than the national average for workers [6]. Injuries and illness can be 

minimized by following safety protocols and with the use of personal protective equipment such 

as gloves, googles, ear plugs, masks, and heat resistance clothing [1, 6].  

Welders are also exposed to a number of hazards from heat, noise, or radiation [4]. 

Additionally, both respiratory and non-respiratory health effects have been reported in welders, 
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including dermal toxicities, neurological changes, cardiovascular damage, and reproductive 

impairments.   

Notably, the UV radiation from the welding arc can result in erythema of unprotected 

areas of welders’ skin, most commonly in the head and neck regions [4]. Many welders suffer 

burns. The severity of the UV radiation exposure depends on a number of factors including 

distance from the source, susceptibility of the host, use of protective clothing, exposure time, and 

wavelength [8]. Some reports have suggested that welders have increased incidences of 

nonmelanoma skin cancers including basal cell carcinomas and actinic keratosis, a potential 

precursor to squamous cell carcinomas [4, 10-14].  

Neurological effects from welding exposures largely stem from the presence of 

manganese in welding fumes [4, 15]. Manganese is a known neurotoxin and is present in many 

types of welding fumes. Most reported instances of neurological toxicities in workers occurred 

when welding fumes were abnormally high or when welding in confined, poorly ventilated or 

unmaintained workplaces [4, 16, 17]. Situations such as these can lead to manganese 

overexposure which may cause a Parkinson disease-like syndrome. It is believed that some 

inhaled welding fumes can deposit in the airways of the head and neck where they may reach the 

brain through areas such as the olfactory neurons in the nose [18]. Manganese then accumulates 

in the basal ganglia, an area of the brain that aids in movement control, and can cause 

irreversible brain damage. As the disease progresses, patients suffer from manganism which 

presents similarly to Parkinson’s disease with tremor, gait abnormalities, muscle weakness or 

rigidity, and slow movements [19, 20]. While the mechanism of this manganese toxicity is not 

entirely know, Criswell et al. demonstrated that the caudate regions of the brain in Mn-exposed 

welders took up significantly less fluorinated L-DOPA compared to controls, suggesting 
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dysfunction of pre-synaptic dopaminergic neurons [21]. Chronic exposure to high levels of 

manganese has also shown to inhibit motor function and affect thalamic GABA levels in welders 

[22]. It is currently not clear if exposure to chronic, low levels of manganese may result in 

similar adverse neurological effects long term [15].  

Because airborne pollution, a metal-rich particulate matter, is known to cause adverse 

cardiovascular effects in high risk populations such as the very young or old or those with 

underlying cardiac conditions, it has been suggested that welding fumes may have similar 

adverse effects [23]. However, because workers are typically healthier than the general 

population, they are unlikely to be members of a high risk, susceptible group, making risks of 

adverse cardiovascular events potentially less likely [4].  Nevertheless, some animal and 

epidemiological studies do suggest welding fumes may negatively impact the cardiovascular 

system. Li et al. found that welders had a moderate, but significant, increase in blood pressure 

compared to controls [24]. While no changes were noted in endothelial cells or other markers, 

the increase in blood pressure does suggest welding fume exposure has an effect on the 

cardiovascular system. Zheng et al. observed no differences in blood pressure or heart rate in rats 

after exposure to GMA-MS or MMA-hard surfacing welding fumes yet did note these fumes 

decreased left ventricular end diastolic pressure [25]. Erdely et al. noted that mice exposed to 

stainless steel welding fume developed increased atherosclerotic lesions [26]. Studies have also 

shown that exposure to stainless steel welding fumes may reduce contraction of cardiomyocytes 

isolated from rats [27]. It is possible that some of the adverse cardiovascular effects of welding 

fumes may be due to hypomethylation of coagulation factor II receptor-like 3 gene (F2RL3), a 

known marker for cardiovascular morbidity and mortality [28].  However, more studies are 



www.manaraa.com

10 

 

needed to investigate the association between welding fume exposure and adverse cardiovascular 

events to confirm a potential mechanistic link.  

Concerns have also been raised about the potential for welding fumes to impair the 

reproductive system. In particular, some studies have shown that semen quality and quantity are 

decreased in welders [29]. Metals have also been shown to accumulate in the reproductive 

organs of rats and lead to changes in testosterone levels [30]. One epidemiological study 

observed an association between paternal exposure to low dose welding fumes and UV radiation 

and the development of spina bifida in offspring [31]. There is some evidence that maternal 

exposure to welding fumes may hinder fetus growth and that paternal exposure to welding fumes 

may increase the risk of premature delivery [32]. In general, however, very few studies have 

fully evaluated the risk to the fetus after maternal or paternal exposure to welding fumes. Further 

research is needed to more clearly investigate the potential effects of welding fume exposure on 

pregnancy and fetal outcomes.     

Despite potential dermal, neural, or reproductive toxicities of welding fume exposure, 

most adverse health issues are pulmonary in nature [4]. In fact, most welders report experiencing 

respiratory problems due to welding at some point in their lifetime.  These may include metal 

fume fever, bronchitis, siderosis, pulmonary fibrosis, asthma, and infection. However, perhaps 

the most severe adverse effect from welding fume exposure is the potential development of lung 

cancer. Numerous epidemiological studies have indicated that welders are at an increased risk of 

lung cancer [4, 5].  Because of substantial epidemiological evidence and some evidence in 

animal studies, welding fumes were classified as a Group 1 carcinogen by the International 

Agency for Research on Cancer in 2017 [5].The following dissertation begins with a 

comprehensive literature review on welding fume exposure and the development of lung cancer 
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followed by in vivo studies our laboratory has performed investigating GMAW-SS, GMAW-MS, 

and Cu-Ni fumes. 
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Abstract 

Nearly 11 million people hold the job title of welder, and more than 110 million people 

around the world have some sort of welding-related exposure. While welding is a crucial 

industrial process, the hazardous fumes created during welding are known to cause acute and 

chronic health effects when inhaled. In 2017, the International Agency for Research on Cancer 

(IARC) classified welding fumes as Group 1 (carcinogenic to humans). This classification was 

based on sufficient epidemiological evidence and limited evidence in animals. This review 

summarizes the current literature surrounding epidemiological, in vivo, and in vitro research on 

lung cancer in welders. Although the epidemiological evidence is at times contradictory, it 

generally points to an increased risk. Additional animal and in vitro studies are needed to further 

explore the association between welding and lung cancer and help to understand a potential 

mechanistic link.  

Keywords: welding, lung cancer, A/J mice, gas metal arc, stainless steel, mild steel 
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Introduction 

Approximately 11 million welders perform 80 different types of welding processes 

around the world to produce everything from ships, automobiles, and bridges to mp3 players, 

medical devices, and computers [1-5]. The vast majority of metals are fused by an electric arc 

welding process. Specific types of arc welding include manual metal arc welding [MMA; also 

known as shielded manual metal arc welding (SMAW)], gas metal arc welding (GMAW), Flux-

cored arc welding (FCAW), gas tungsten arc welding (GTAW), submerged arc welding (SAW), 

and plasma arc welding (PAW) [6].  In arc welding, high temperatures of 5,000˚C or more melt 

the joint between two metal work pieces as well as a filler material placed between them [1]. 

This extremely high heat capable of melting metals is produced by the electric arc which is 

established between the work pieces and, in most instances, a consumable wire electrode. As 

temperatures cool, the bond solidifies, firmly fusing the work pieces together. The bond created 

by welding is unique in that it is a mixture of the metal work pieces and the electrode filler 

material, making the bond extremely strong as it retains the strength of both initial metal parts [1, 

4]. Given the variety of welding processes used in the workplace, welders’ exposure are diverse, 

rather than homogenous [7]. 

Welding fumes are created as a byproduct of many of the welding processes, particularly 

arc welding [1].  The concentration of the fume in the personal breathing space of the welder 

depends on the volume of the space the welder is in as well as how well the area is ventilated.[8] 

Welding fume is generated by a process called nucleation, whereby metal oxides are vaporized at 

high temperature and then condense to form particles [9]. Coagulation then occurs in which 

particles collide to form clumped aggregates. These aggregates are held together by electrostatic 

forces, magnetism, and/or van der Waals forces [9-11]. The size of the welding fume particles 

formed vary depending on the welding process but can range from less than 0.1 µm to over 20 
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µm. However, the mass median aerodynamic diameter of most welding fumes has been 

measured to be in the range of 0.2 to 0.5 µm [9-12]. The size of the fume particles is important as 

this affects where they will end up in the lung. Particles that are larger may not make it beyond 

the upper airways while the smallest particles of ~0.1-0.3 µm have the potential to reach the 

alveolar space of the lungs [13]. The mucocilliary escalator helps to quickly clear particles from 

the middle and upper airways, sweeping debris towards the mouth to be swallowed and removed 

from the body [14]. Some remaining particles may be carried by macrophages or neutrophils into 

the lymphatic system while other particles may be directly taken up by type I pneumocytes and 

enter the bloodstream. However, clearance is slower in the alveoli compared to the upper 

airways. Here, it is likely that particles are engulfed by macrophages where they may remain for 

some time. The half-life of welding fume particles in the lungs is estimated to be almost 2 years 

[1, 15].  

The welding aerosol composition varies depending on the specific type of welding 

process. However, it is typically composed of a mixture of vaporized metal oxides from the 

electrode and/or flux material which are small enough in size to be respired and reach the alveoli 

of the lungs [1]. Surface coatings or paint on the base metal or electrode can also contribute to 

the aerosol. Due to the contribution by the flux, MMA fume is much more complex than GMAW 

fume [9, 11]. The presence of alkali metals in the flux also make MMA fume highly soluble 

compared to GMAW fumes which are mostly insoluble [16]. Nevertheless, welding generates a 

complex fume composed of potentially hazardous metals as well as gases such as carbon 

monoxide (CO), nitrogen oxide (NO), and ozone (O3) [1]. While the metal composition of the 

fume varies depending on the type of welding process, it may include iron, chromium, 

manganese, and nickel with typically lower amounts of zinc, aluminum, cadmium, or fluorides. 
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Table 1 summarizes the major metal composition of SS and MS welding fumes. Iron is one of 

the major metals in many welding fumes, and reports indicate that 70 mg of iron are deposited in 

full-time welders’ lungs each year [17]. Workers typically clear this iron slowly, and it is known 

to persist in their lungs for many years, with some estimates indicating retired welders only clear 

10 to 20% of their accumulated iron burden each year [1, 17]. Interestingly, iron exposure may 

cause a benign lung condition known as siderosis [1]. Increased incidences of lung cancer have 

been observed in iron-exposed workers such as iron-ore mining and welding, but because these 

do not represent pure exposures to iron, iron is currently not classified as a carcinogen by IARC 

[18]. Chromium is found in stainless steel welding fumes in both Cr3+ and Cr6+ oxidation states 

[19]. Cr3+ cannot enter cells and is therefore considered less toxic. Cr6+ is highly toxic as it can 

enter cells and is classified as a carcinogen [20]. The permissible exposure limit (PEL) of 

chromium was lowered to 5 µm/m3 in 2006 due to its harmful effects [21]. Manganese is used in 

welding because it hardens and strengthens the weld while minimizing cracking and can become 

a component in the fume [1, 22]. Manganese is not considered carcinogenic, but has been 

reported to cause neurotoxic effects in humans and animals [23-27]. Nickel (Ni) is a component 

of stainless steel welding fume and Ni alloys are becoming increasingly popular in welding as a 

potential alternative to welding with chromium-containing materials. However, Ni is also known 

to be toxic and is classified as a human carcinogen [20].  

Because the respiratory hazards associated with welding are due to inhalation of the 

fume, ventilation and respiratory controls can help to minimize these adverse effects [1]. 

Ventilation options include both local exhaust ventilation and general ventilation [4]. Local 

exhaust ventilation removes the welding fume right at the source without disrupting the welding 

process. General ventilation systems include natural ventilation through windows, doors, and 
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vents as well as mechanical ventilation. However, in some situations, achieving proper 

ventilation can be difficult or not possible, and no local exhaust ventilation will capture 100% of 

generated welding fume [28]. In some situations, welding is performed in confined spaces which 

amplifies the hazards as fumes can rapidly accumulate. These confined spaces can include 

storage tanks, holds of ships, furnaces and boilers, tunnels, ducts, sewers, silos, pipelines, and 

underground utility vaults [29]. Respirators can help protect workers when engineering controls 

fail, but some studies have shown that respirators are not completely effective in protecting 

welders from welding fumes [30]. Despite the use of engineering controls, cases of adverse 

respiratory effects among welders are still reported.   

Metal fume fever is among the most common respiratory condition in welders, presenting 

with flu-like symptoms such as cough, dyspnea, and malaise [1, 6]. Typically symptoms of metal 

fume fever occur 2 days after exposure and resolve 24 to 48 hours later. Given the symptoms and 

this time frame, cases of metal fume fever may be underreported and underdiagnosed. While the 

mechanism of metal fume fever is not fully understood, it is believed that metals in the welding 

fume cause a hypersensitivity reaction when inhaled due to the release of cytokines [31]. Chronic 

bronchitis is also not uncommon among welders [32, 33]. This disease presents with a chronic 

productive cough characterized by copious mucus production and dyspnea [34]. Confounders 

complicate studies of bronchitis in welders, most notably smoking which is a known cause of the 

disease [1, 35]. However, some studies have shown increased incidence of chronic bronchitis in 

welders, even when controlling for smoking status [36]. Siderosis, iron oxide deposits in the 

lung, is a well-documented yet usually nonthreatening and asymptomatic finding in long-term 

welders [1, 37]. In some instances siderosis has been known to progress to pulmonary fibrosis, a 

restrictive lung disease which impairs lung function [38, 39]. In the absence of pulmonary 



www.manaraa.com

22 

 

fibrosis, however, chronic welding fume exposure does not seem to lead to long term changes in 

lung function [40]. Some reports have indicated that exposure to welding fumes may cause an 

occupational asthma which would present as an obstructive lung disease when symptomatic [1, 

41, 42]. Epidemiological studies have indicated that welders are more susceptible to lung 

infections such as pneumonia and have higher rates of mortality due to these infections [43-46]. 

Some case reports suggest that welders may even be at greater risk of infection and disease from 

generally benign, harmless organisms [45, 47]. 

While a number of respiratory complications are possible from welding fume exposure, 

by far the most feared adverse effect is the potential development of lung cancer. Numerous 

epidemiological studies have indicated that welders are at an increased risk of lung cancer [1].  

Because of substantial epidemiological evidence and some evidence in animal studies, welding 

fumes were classified as a Group 1 (carcinogenic to humans) by the International Agency for 

Research on Cancer in 2017 [3]. The following report is meant to be a critical evaluation of the 

literature surrounding lung cancer in welders. 

Methods 

A comprehensive literature search was conducted using the databases PubMed and 

GoogleScholar. To identify applicable literature the following keywords were used: lung cancer, 

welding, tumorigenesis, adenocarcinoma, gas metal arc, stainless steel, and mild steel. All 

relevant literature published in English in the last 50 years was considered for this review.  

Results and Discussion 

Epidemiological and worker studies 

The American Welding Society became concerned about possible adverse health effects 

from welding in the 1970s and conducted an in-depth literature review of epidemiological, 
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animal, and in vitro studies [48]. They determined that epidemiological studies at the time were 

inconclusive as they did not account for factors such as smoking, asbestos exposure, previous 

type of work, family history, or genetics and that the potential carcinogenicity of welding fumes 

was “highly controversial.”   

In the years to follow, many worker studies reported an increased risk of lung cancer in 

welders [49-69]. However, whether confounders such as smoking can account for this increased 

risk has been controversial. Smoking is a well-known risk factor for lung cancer, and some 

studies have indicated that welders and metal workers are more likely to be smokers than the 

general population [70, 71]. Stern et al. analyzed 22 epidemiological studies in the literature up 

until the 1980s. They concluded that welders have an approximately 30% increased risk of lung 

cancer compared to non-welders and this risk persisted even when considering potential 

confounders such as tobacco use or asbestos exposure in shipyards. Many other studies agreed 

with the finding that welders are at an increased risk of lung cancer even when considering and 

controlling for smoking status [53, 55, 58, 70-72]. Kendzia et al. analyzed a large database 

containing occupation and smoking status[70]. They adjusted for smoking status, concluding that 

while smoking may explain about 20% of the increased lung cancer risk in welders, it cannot 

explain all of it. They also noted that lung cancer risk was greater in never or light smokers 

compared to heavy smokers, further suggesting a direct carcinogenic effect of welding fumes 

[70]. Vallieres et al. agreed with this finding, observing that there was an excess risk of lung 

cancer in welders among light but not heavy smokers [73]. However, the epidemiological studies 

concerning smoking, welding, and lung cancer are conflicting, with some studies claiming 

confounding from smoking accounts for most of the excess lung cancer risk and other studies do 

not control for or consider smoking status in their analysis [54, 58, 74-77]. The general 
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consensus seems to be that while smoking may contribute to increased lung cancer risk in 

welders, it cannot account for all of it.  

Asbestos exposure has also been suggested to contribute to the increased lung cancer risk 

in welders. Asbestos is known to cause lung cancer and mesothelioma and in some workplaces, 

such as shipyards, workers can be exposed to this material. While asbestos fibers are not stable at 

the high temperatures created by welding, welders could sometimes still be exposed to it when 

asbestos was used as a filler material or for insulation [70]. It has been reported that welders have 

an increased mesothelioma risk [78]. A number of studies have concluded that the excess lung 

cancer risk in welders cannot be attributed to asbestos, however [58, 70, 72].  Kendzia et al. 2013 

concluded that the excess risk of lung cancer in welders cannot be sufficiently explained by 

exposure to asbestos. Mannetje et al. adjusted for asbestos exposure in welders and still found an 

excess lung cancer risk [79]. However, the epidemiological studies are controversial, with some 

studies concluding that asbestos does account for the higher frequency of lung cancer in welders 

[54-56, 75, 76, 80-82]. While some of these reports indicate that asbestos may be a confounder in 

their study, not all of them adjusted for asbestos exposure. Like was found with smoking, while 

asbestos may account for some of the increased risk of lung cancer in welders, it likely cannot 

account for all of it.   

It is also frequently debated whether SS fume, containing the known carcinogens Ni and 

Cr, is largely responsible for the increased lung cancer risk in welders compared to MS fume 

which contains mostly Fe. Melkild et. al and Danielsen et al. found an increased risk of lung 

cancer with MS welding, but the presence of confounders which were not accounted for in these 

studies limits these findings [54, 76]. Simonato et al. observed an increased risk of lung cancer 

among both SS and MS welders but concluded the risk was greater with SS welders [56]. Other 
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studies found no increased risk of lung cancer among MS welders [83, 84]. In a study by 

Steenland et al., however, welders only had to have two years of exposure for inclusion in the 

study, which may not have been long enough to increase lung cancer risk [84]. Nevertheless, 

numerous studies did find a significantly increased risk of lung cancer in MS welders [58-62, 79, 

85]. Hansen et al. actually found that there was a significant excess risk of lung cancer in MS 

only welders but a non-significant excess risk of lung cancer among SS only welders [60]. Siew 

et al. specifically observed an increased risk of lung cancer in workers exposed to both iron and 

welding fumes [85]. However, because metal workers often weld with multiple different 

processes throughout their lifetime, many welders have mixed fume exposures which can make 

investigating these associations difficult [69]. 

Worker studies from the last 50 years have been at times contradictory and controversial. 

While some studies show clear, increased risks of lung cancer among welders, others show 

increased risk only with certain types of welding fumes or find that confounders such as smoking 

and asbestos exposure obscure any potential relationship. The results from epidemiological and 

worker studies emphasize the need for controlled in vivo and in vitro studies of welding fume 

exposures. 

In vivo studies 

Despite substantial human studies concerning lung cancer and welding, in vivo studies 

are comparatively lacking. Those studies which have been published have focused primarily on 

MMA and GMAW studies using mouse or rats. Table 1 summarizes in vivo studies directly 

investigating a tumorigenic effect of welding fumes. Some of the earliest in vivo studies were 

published in the 1980s with little to no further investigations for nearly a decade. 

Ruezel et al. 1985 studied the effects of exposure to MMA-SS and GMAW-SS fumes in 

male Syrian golden hamsters [86]. Hamsters were exposed to 0.5 or 2.0 mg of GMAW-SS or 



www.manaraa.com

26 

 

MMA-SS fume via intratracheal instillation once per week for 50 weeks.  However, due to the 

high morbidity and mortality in the 2.0 mg MMA-SS group, dosing in this group was reduced to 

once every 4 weeks after week 26. Histopathological analysis showed just two malignant tumors 

in the lungs of MMA-SS-exposed hamsters and none in the GMAW-SS-exposed animals. The 

authors concluded that MMA-SS may induce malignant lung tumors.  

Berg et al. 1987 investigated the carcinogenic property of MMA-SS by implanting pellets 

into the bronchi of 100 male and female Sprague-Dawley rats [87]. Pellets were prepared by 

rolling 5 x 10 mm rectangle sheets of fine stainless steel wire which were then dipped into 

cholesterol containing the welding fume or a control substance. An incision was made at the 

level of the clavicle between the cartilaginous rings of the trachea and the pellet was implanted 

into the left bronchus. Rats were euthanized by exsanguination 34 months post-implantation of 

the pellet and the pellet was removed. Serial sections were cut from the lung near where the 

pellet had been located. The pellet remained in position in the majority of rats and produced local 

fibrosis which was not different between control and MMA-SS exposed mice. At no point in the 

study did any rats show signs of respiratory disease. While many rats developed non-respiratory 

tumors such as mammary and skin tumors, few lung tumors were observed. A subpleural 

squamous cell carcinoma was observed in the right lung lobe of one rat exposed to the welding 

fume pellet, opposite the site of pellet implantation. The appearance was more similar to a 

peripheral metastasis to the lung rather than a primary lung tumor. The authors concluded that 

this Cr-containing welding fume did not increase the risk of lung cancer in Sprague Dawley rats.  

 As the epidemiological support for an association between welding and lung cancer 

continued to grow, further in vivo studies were performed. In the late 1990s, Antonini et al. 

began to investigate the pneumotoxic and inflammatory properties of different types of welding 
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fumes in vivo. When the pneumotoxic properties of GMAW-SS and GMAW-MS were 

investigated via intratracheal instillation into male CD/VA rats, it was observed that GMAW-SS 

induced greater lung injury and inflammation than GMAW-MS fume [88].  In a subsequent 

study, MMA-SS was compared to GMA-MS after intratracheal instillilation into male CD/VAF 

rats and bronchoalveolar lavage was performed at 1, 14, and 35 days post-exposure. Both fumes 

caused lung damage at the earlier time point, but this lung damage had resolved by 14 days post-

instillation in the GMAW-MS exposed rats. However, significant lung damage was still observed 

at 14 days post-instillation in the MMA-SS exposed rats which subsided at 35 days post-

exposure. MMA-SS also caused a significantly greater release of TNF-α and IL-1β in the lavage 

fluid [89]. Similarly, it was observed that GMA-SS, GMA-MS, and MMA-SS caused increased 

cytotoxicity in Sprague-Dawley rats after intratracheal instillation. However, MMA-SS treatment 

caused maximal cytotoxicity and greater cellularity of lavage compared to GMA-SS or GMA-

MS fumes [90].  

 Solano-Lopez et al. investigated inflammatory and hyperplastic changes in the lungs of 

A/J mice following MMA-SS exposure via oropharyngeal aspiration [91]. They performed 

bronchoalveolar lavage at 1 day, 1 week, and 16 weeks post-exposure to assess lung injury and 

inflammation and 1, 8, 16, 24, and 48 weeks post-exposure to analyze histopathology. Lung 

injury and inflammation was increased at 1 day and 1 week post-exposure to MMA-SS but 

resided by 16 weeks. Bronchiolar epithelial cellular atypia and alveolar bronchioloalveolar 

hyperplasia as well as a lymphogranulomatous response characterized by lymphocytes and 

epitheloid macrophages was observed 1 week post-exposure to MMA-SS. The normal 

architecture of the pulmonary tissue was effaced with accumulation of brown pigment presumed 

to be SMA-SS. By 8 weeks post-exposure, the pulmonary architecture was restored but the 
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inflammation, bronchiolar cellular atypia, and proliferation persisted. These results emphasized 

the need for ongoing animal studies exploring the tumorigenic potential of welding fumes. 

 Some studies have investigated potential mechanisms of welding fume toxicity and 

tumorigenic potential. Shoeb et al. investigated epigenetic changes following GMAW-MS and 

MMA-SS fume exposure [92]. Male Sprague-Dawley rats were exposed by intratracheal 

instillation to GMAW-MS or MMA-SS and bronchoalveolar lavage (BAL) was performed at 4 

hours, 14 hours, 1 day, 3 days, 10 days, and 30 days post-exposure. Peripheral blood 

mononuclear cells were isolated from whole blood and dihydroethidium fluorescence and 4-

hydroxylnoneal protein adduct formation were assessed. DNA alterations including methylation 

and telomere changes were also investigated. It was observed that MMA-SS induced a greater, 

more persistent inflammatory response compared to GMA-MS or control. Markers of oxidative 

stress were only increased in mononuclear cells from MMA-SS-exposed rats. No significant 

differences were seen in DNA methylation between control and GMA-MS or MMA-SS at any 

time points. However, MMA-SS significantly increased telomere length 1 day and 30 days post-

exposure compared to GMA-MS or control.  

 In 2006, Antonini et al. designed and constructed a robotic welding fume inhalation 

exposure system at the National Institute for Occupational Safety and Health which allowed for 

advancements in in vivo studies of welding fumes [10]. This robotic welder generates welding 

fumes behind closed glass doors and the fume is picked up by a flexible tube and carried to a 

separate room where animals can be exposed by whole-body inhalation exposure. In this 

exposure room, conditions such as temperature, humidity, and gas production can be closely 

monitored and controlled. The construction of this robotic welder allowed for future in vivo 

inhalation studies which would more closely mirror worker exposures. 
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 One of the earlier welding fume inhalation studies investigated the pneumotoxic and 

inflammatory properties of GMAW-SS fume in male Sprague-Dawley rats [93]. Rats were 

exposed to 15 or 40 mg/m3 of GMAW-SS x 3 hours/day for 1, 3, or 10 days. Parameters of lung 

injury and inflammation were assessed at 1, 4, 6, 11, 14, and 30 days post-exposure. At all of the 

earlier time points, parameters of lung injury were significantly elevated but neutrophils were not 

increased until 6 days post-exposure. It was concluded that short-term inhalation of GMAW-SS 

causes significant lung damage and delayed pulmonary inflammation, but chronic inhalation 

studies were needed to further investigate the effect of welding fumes.  

 In 2008, Zeidler-Erdely et al. exposed male A/J and C57BL/6J mice to GMA-MS, GMA-

SS, and MMA-SS via oropharyngeal aspiration in four separate bolus doses [94]. BAL was 

performed at 2, 7, and 28 days post-exposure and gross lung tumor counts and histopathological 

analysis were assessed at 48 and 78 weeks post-exposure. Results showed that GMAW-SS 

caused an acutely greater and more prolonged inflammatory response in the lungs of A/J mice. 

GMAW-SS also persisted in the lungs the longest and caused a trend towards increased tumor 

incidence. In a similar study, male A/J and C57BL/6J mice were exposed to MMA-SS fume by 

oropharyngeal aspiration once per month for four months [94]. At 78 weeks post-exposure, gross 

tumor counts and histopathology were assessed. MMA-SS-exposed A/J mice had significantly 

increased average tumor numbers per lung compared to air control, but this was only an average 

of about 1 more tumor per lung than control. There was no difference in tumor numbers among 

C57BL/6J mice exposed to air or MMA-SS. The authors concluded that MMA-SS fume on its 

own does not produce a significant tumorigenic response in an animal model. This study was 

accompanied by a short-term inhalation study of GMAW-SS fume in A/J and C57BL/6J mice 

[95]. Mice were exposed to GMAW-SS at 40 mg/m3 for 3 hours/day for 6 and 10 days. 
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Pneumotoxicity and inflammation was observed in BAL at 1, 4, 7, 10, 14, and 28 days post the 

10 day exposure. Lung tumor counts and histopathology were analyzed in A/J mice at 78 weeks 

post the 6 and 10 day exposures. While GMAW-SS induced a significant inflammatory response 

that was not recovered by 28 days in both mouse strains, no significant lung tumor development 

occurred in A/J mice.  

Given these findings and the strong epidemiological support for lung cancer in welders, 

more chronic in vivo exposure studies were needed. The first such study was conducted in 2013 

by Zeidler-Erdely et al. in which the authors employed a two-stage initiation-promotion model to 

study potential lung tumor production in A/J mice following GMAW-SS exposure [96]. An 

initiation-promotion model was investigated as a potential mechanism of welding fume lung 

tumorigenesis given that the former studies showed that welding fumes were not significantly 

initiating lung tumor formation, despite the strong epidemiologic evidence of lung cancer in 

welders. In this study, male A/J mice were treated with the chemical initiatior 3-

methylcholanthrene (MCA) or a corn oil vehicle control and one week later were exposed to low 

or high doses of GMAW-SS via oropharyngeal aspiration once per week for 5 weeks. After 30 

weeks post-initiation, lung tumors were enumerated. It was observed that MCA initiation 

followed by GMAW-SS promotion significantly increased lung tumor number compared to 

MCA/air controls (12.1 ± 1.5 tumors/mouse for low dose GMAW-SS and 14.0 ± 1.8 

tumors/mouse for high dose GMAW-SS vs. 4.77 ± 0.7 tumors/mouse in MCA/air).  This study 

provided support for the theory that welding fumes can act as lung tumor promoters in vivo. This 

study was followed by a chronic in vivo inhalation study [97]. Male A/J mice received 

intraperitoneal injections of corn oil or MCA and beginning one week later were exposed to air 

or GMAW-SS fume at a concentration of 40 mg/m3 for 8 hours/day, 4 days/week, for 9 weeks. 
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After 30 weeks post-initiation, average tumors per mouse lung and histopathology were 

analyzed. Mice initiated with MCA and then promoted with GMAW-SS had significantly greater 

average lung tumor numbers compared to MCA/air controls (16.11 ± 1.18 vs. 7.93 ± 0.82). 

Taken together, the results of these studies provide strong support that welding fumes can act as 

lung tumor promoters in vivo.  

In vitro studies 

Numerous in vitro studies have been performed investigating the toxicity of the 

individual metals that can be found in welding fumes. However, in vitro studies investigating the 

potential toxic and tumorigenic properties of the welding fumes themselves are scarcer.  

Hedenstedt et al. 1977 investigated the mutagenicity of MMA-SS, MMA-MS, GMAW-

MS, and GMAW-SS fumes in Escherichia coli [98]. They observed that MS fume did not cause 

mutagenicity while SS fume did cause a mutagenic effect, which they attributed to the Cr6+ in the 

SS.  They also found that MMA was more mutagenic than GMAW. MMA is known to be more 

soluble than GMAW, and the authors concluded this solubility contributed to its mutagenicity. 

Maxild et al. agree with these results, demonstrating that SS and MMA where more mutagenic 

than MS and GMAW, respectively, using the Salmonella/microsome mutagenicity test [99]. In 

1983, White et al. exposed bovine alveolar macrophages to MMA-SS and MS fumes in vitro for 

17 to 20 hours [100]. The results indicated that both welding fumes were more cytotoxic than 

control, but SS had even greater cytotoxicity than MS. It was also observed that MS and SS 

fumes did not reduce alveolar macrophage number, suggesting they damage cell membranes 

without destroying the cells up to 20 hours. Additionally, MS fume had reduced toxicity when 

added with DPPC, the main component of surfactant, which may make it less cytotoxic in vivo. 

 More than a decade later, Antonini et al. investigated the effect of MMA-SS on free 

radical production and DNA damage in vitro [101]. Electron spin resonance demonstrated that 
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MMA-SS fume had the ability to produce reactive hydroxyl radical, likely as a result of 

reduction of Cr(VI) in the fume to Cr(V).  Using a DNA strand break assay, they observed that 

MMA-SS fume caused a concentration-dependent increase in DNA damage. These responses 

may help to explain a potential carcinogenic process of welding fumes. A similar study by 

Leonard et al. investigated free radical and reactive oxygen species generation after exposing 

mouse peritoneal monocytes to GMA-SS and GMAW-MS fumes in vitro [102]. It was observed 

that the welding fumes generated free radicals from reactions with H2O2 and caused lipid 

peroxidation and DNA damage. While both MS and SS produced free radicals, GMAW-SS 

consistently generated more reactivity and free radicals. Similar to Antonini et al., this 

heightened toxicity was thought to be due to the presence of Cr and/or Ni in the SS but not MS 

fume. It was therefore hypothesized that perhaps a newer Cu-Ni welding fume would be a safer 

alternative to GMAW-SS or MMA-SS which contain Cr. Badding et al. exposed RAW 264.7 

mouse macrophages to welding fumes and observed that GMA-MS and GMA-SS had greater 

ROS production than the Cu-Ni welding fume [103]. However, the Cu-Ni welding fume proved 

to be more cytotoxic as it induced cell death and mitochondrial dysfunction at a lower dose and 

impaired macrophage ability to phagocytose bacteria. Similarly, Antonini et al. observed that the 

Cu-Ni welding fume, unlike GMAW-MS and GMAW-SS, did not significantly increased free 

radical production in vitro yet did reduce lung macrophage viability even more than GMAW-MS 

or GMAW-SS.[104] This suggested the Cu-Ni fume may have a direct cytotoxic effect on the 

lung rather than cause toxicity by ROS production [104]. These findings support the notion that 

it is not just the presence of Cr in the fumes that may be dangerous to worker health. 

Nevertheless, future in vitro studies could help to better explore which welding fumes and their 

component metals are most toxic. 
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Conclusions 

Significant evidence that welding fumes are carcinogenic led to their re-classification as a 

group 1 carcinogen by IARC in 2017. While epidemiological and worker studies have shown 

mixed results, this points to the difficulties of epidemiological studies given the potential for 

confounders like smoking and asbestos, the possibility of mixed welding fume exposures, 

personal safety habits, genetics, and other risk factors. In vitro and in vivo studies have 

demonstrated that many types of welding fumes have toxic and tumorigenic potential. Most 

notably, studies have demonstrated that some welding fumes have the ability to promote lung 

tumorigenesis in vivo. Nevertheless, little is known concerning the mechanisms by which 

welding fumes act as lung carcinogens. Continued research is needed to better elucidate potential 

mechanisms as well as continue to clarify which welding fumes and their metal constituents are 

most hazardous to worker health.  
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Tables

Welding Fume Sample Metal (weight %) Soluble/Insoluble Ratio 

 

GMA-MS 

 

Fe (85%) 

Mn (14%) 
0.020 

 

GMA-SS 

 

 

Fe (57%) 

Mn (13.8%) 

Cr (20.2%) 

Ni (8.8%) 

Cu (0.2%) 

0.006 

Table 1. Metal composition of SS and MS welding fumes based on metal analysis previously 

presented in Antonini et al. 2006.   
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Table 2. Published in vivo studies investigating carcinogenic effects of welding fumes. 

MMA-SS: Manual manual arc welding – stainless steel 

GMAW – SS: Gas metal arc welding – stainless steel 

Welding 

Fume 
Exposure Route Animal Model 

Carcinogenic 

Effect 
Article 

MMA-SS 

 

Intratracheal 

instillation 

 

 

Intrabronchial pellet 

implanation 

 

 

Oropharyngeal 

Aspiration 

 

Syrian golden 

hamster 

 

 

Sprague-Dawley rat 

 

 

 

A/J mouse 

C57BL/6J mouse 

 

 

Yes 

 

 

 

No 

 

 

 

Yes 

No 

 

Ruezel et al. 1985  

 

 

Berg et al. 1987  

 

 

 

 

Zeidler-Erdely et al. 2011  

 

 

GMAW-SS 

 

Intratracheal 

instillation 

 

 

Oropharyngeal 

Aspiration 

 

 

Oropharyngeal 

Aspiration 

 

 

Inhalation 

 

 

Inhalation 

 

 

Inhalation 

 

 

 

Syrian golden 

hamster 

 

 

A/J mouse 

C57BL/6J mouse 

 

 

A/J mouse 

 

 

 

A/J mouse 

C57BL/6J mouse 

 

A/J mouse 

 

 

A/J mouse 

 

No 

 

 

 

No 

No 

 

 

Yes 

 

 

 

No 

No 

 

Yes 

 

 

Yes 

 

Ruezel et al. 1985  

 

 

 

Zeidler-Erdely et al. 2008  

 

 

 

Zeidler-Erdely et al. 2011  

 

 

 

Zeidler-Erdely et al. 2011  

 

 

Zeidler-Erdely et al. 2013  

 

 

Falcone et al. 2017  
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Abstract 

Epidemiologic studies suggest an increased risk of lung cancer with exposure to welding fumes, 

but controlled animal studies are needed to support this association. Oropharyngeal aspiration of 

collected “aged” gas metal arc-stainless steel (GMA-SS) welding fume has been shown by our 

laboratory to promote lung tumor formation in vivo using a two-stage initiation-promotion 

model. Our objective in this study was to determine if inhalation of freshly generated GMA-SS 

welding fume also acts as a lung tumor promoter in lung tumor susceptible mice. Male A/J mice 

received intraperitoneal (IP) injections of corn oil or the chemical initiator 3-methylcholanthrene 

(MCA;10 µg/g) and one week later were exposed by whole body inhalation to air or GMA-SS 

welding aerosols for 4 h/d x 4 d/w x 9 w at a target concentration of 40 mg/m3. Lung nodules 

were enumerated at 30 weeks post-initiation. GMA-SS fume significantly promoted lung tumor 

multiplicity in A/J mice initiated with MCA (16.11 ± 1.18) compared to MCA/air-exposed mice 

(7.93 ± 0.82). Histopathological analysis found that the increased number of lung nodules in the 

MCA/GMA-SS group were hyperplasias and adenomas, which was consistent with developing 

lung tumorigenesis. Metal deposition analysis in the lung revealed a lower deposited dose, 

approximately 5 fold compared to our previous aspiration study, still elicited a significant lung 

tumorigenic response. In conclusion, this study demonstrates that inhaling GMA-SS welding 

fume promotes lung tumorigenesis in vivo which is consistent with the epidemiologic studies that 

show welders may be at an increased risk for lung cancer. 
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Introduction 

Welding, a process of joining metals, is a common industrial practice worldwide. It is 

estimated that there are nearly 400,000 full-time welding occupations in the United States alone 

as of 2014 [1]. Gas metal arc (GMA) welding is a type of electric arc welding where an electric 

arc is established between the work piece and a consumable wire electrode. High temperatures 

create a molten pool into which the electrode is continuously fed and the metals fuse together as 

they cool. This process utilizes an inert shielding gas to protect the weld from oxidative 

weakening and vaporizes metals, forming metal oxides which react with air to form welding 

fumes. The welding fumes are a complex mixture of gases and metal oxides that are derived 

primarily from the electrode. However, the shielding gas, electrode coating, base metal, and paint 

or other surface coatings may also contribute to the welding fume composition [2].  

GMA-stainless steel (SS) welding fumes contain a metal-rich particulate matter that 

contains carcinogenic (hexavalent chromium [Cr VI] and nickel [Ni]) and non-carcinogenic 

(manganese [Mn] and iron [Fe]) metals. A number of well-documented, harmful effects have 

been associated with welding fume exposure. The most common acute health effect of welding 

fume inhalation is metal fume fever, characterized by flu-like symptoms, cough, and dyspnea, 

while the most common chronic health effect is bronchitis [2]. Along with complications such as 

infection or neurological effects, lung cancer from exposure to welding fumes is an area of 

concern, yet few controlled animal studies have investigated this association. Several 

epidemiological studies support the hypothesis that exposure to welding fume increases lung 

cancer risk [3-6]. The need for animal studies is critical, as worker exposure is not always well-

documented. In addition, workers may be exposed to additional occupational agents or 

confounders (e.g. smoking) that complicate epidemiological studies [7].  The International 

Agency for Research on Cancer (IARC) advisory group on the Monograph priorities for 2008 
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listed welding fume as a high priority agent for further evaluation of lung cancer risk in humans. 

Welding fume is classified as a group 2B carcinogen (possibly carcinogenic to humans) and will 

be re-evaluated by an IARC working group in 2017 [8].  

Previous research in our laboratory has shown that GMA-SS welding fume persists in the 

lung for 1.5 years and triggers mild, chronic inflammation, but does not initiate tumor formation 

in lung tumor-susceptible A/J mice [9]. In a two-stage initiation-promotion model of lung 

tumorigenesis, GMA-SS welding fume significantly increased lung tumor incidence and 

multiplicity at 30 weeks post-oropharyngeal aspiration [10].  This finding suggests stainless steel 

welding fume may act as a lung tumor promoter. Given these results, we aimed to determine if 

inhalation of GMA-SS welding fume also promotes lung tumor formation in A/J mice. Inhalation 

is the preferred route for welding fume-related toxicity studies in animals because it closely 

simulates the occupational exposure with respect to both particle size and surface properties of 

the fume and lung particle deposition. Furthermore, “fresh” GMA-SS welding fume as delivered 

via inhalation is more reactive than “aged” welding fume which is used for oropharyngeal 

aspiration studies [11].   

Methods 

Animals 

Male A/J mice, 4 to 5 weeks of age, were purchased from Jackson Laboratories (Bar 

Harbor, ME) and housed in an Association for Assessment and Accreditation of Laboratory 

Animal Care-Accredited, specific pathogen-free, environmentally-controlled facility. All mice 

were free of endogenous viral pathogens, parasites, mycoplasmas, Helicobacter, and CAR 

bacillus. Mice were housed in groups of five in ventilated cages and provided high-efficiency 

particulate filtered air under a controlled light cycle (12 hour light/12 hour dark) at a standard 
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temperature (22-24⁰C) and 30-70% relative humidity. Animals were acclimated to the animal 

facility for one week and allowed access to a conventional diet (6% irradiated NIH-31 Diet, 

Envigo RMS, Inc., Madison, WI) and tap water ad libitum. All procedures were performed using 

protocols approved by the National Institute for Occupational Safety and Health (NIOSH) 

Institutional Animal Care and Use Committee.  

Experimental protocols for animal exposure and welding fume generator  

A/J mice, 120 in total, were organized into 4 groups using a block design for 

randomization (Figure 1). On day 1, mice aged 5 to 6 weeks were intraperitoneally (IP) injected 

with the chemical initiator, 3-methylcholanthrene (MCA) (Sigma, St. Louis, MO) dissolved in 

corn oil (CO) (Sigma, St. Louis, MO) at a dose of 10 µg/g of body weight or CO alone. MCA 

was chosen as the initiating agent based on the efficient response of the A/J mouse to this 

carcinogen in our oropharyngeal aspiration study [10]. One week post-initiation, mice were 

exposed in whole body inhalation chambers with individual steel mesh cages to aerosols 

generated during GMA-SS welding or air for 4 h/d and 4 d/w for 9 weeks at a target 

concentration of 40 mg/m3 (actual 32.3 ± 2.8 mg/m3). The welding wire used was 0.045 inch 

diameter Lincoln Electric Blue Max MIG 308LSI and the welding parameters were set to 25 

volts DC, 300 inch per minute wire feed, 30 L/min of 95% Argon - 5% CO2 shielding gas, and a 

typical welding current of 220 amps. 

 The design and construction of the welding fume aerosol generator were previously 

described [12].   This automated robotic welder continuously generated welding fumes by 

welding beads onto ¼ inch thick plates of mild steel. The resulting fume was carried into a whole 

body exposure chamber through a ¾ inch flexible tube by maintaining the chamber at a negative 

pressure (0.70 Inch H2O). Particle concentrations within the exposure chamber were 
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continuously monitored with a Data RAM (DR-40000 Thermo Electron Co, Franklin, MA), and 

gravimetric determinations (37 mm cassettes with 0.45 μm pore-size Teflon filters) were used to 

calibrate and verify the Data RAM readings each day. Gas generation, including carbon 

monoxide (CO), carbon dioxide (CO2), oxygen (O2), and ozone (O3), was continuously 

monitored. During the welding exposure, O2 levels were maintained above the OSHA minimal 

acceptable level. O3, CO, CO2 were below OSHA permissible exposure limits and NIOSH 

recommended exposure limits (REL) during the entire exposure duration. In the exposure 

chamber, CO and O3 levels were not significantly higher than background. The exposure system 

setup was slightly modified from that described previously [12] to reduce the travel time of the 

particulate fume from the welding torch to the exposure chamber. This was done to ensure 

delivery of fresher fumes to more closely mimic a worker’s inhalation exposure. 

Body weight determination 

All mice were weight-matched prior to the inhalation exposure. Mice were weighed 

weekly throughout the experimental time course and at the 30-week sacrifice.    

Whole lung metal analysis 

Male A/J mice were exposed by inhalation to GMA-SS welding aerosols (40 mg/m3) (n = 

25) or filtered air (n = 10) for 4 h. Immediately following exposure, whole lungs were excised, 

trimmed, and lyophilized. The freeze-dried tissue was weighed then acid digested.  Inductively 

coupled argon plasma, atomic emission spectroscopy at NIOSH-Division of Applied Research 

and Technology (Cincinnati, OH) was used to determine the amount of Cr, Ni, Cu, Fe, and Mn 

present in the lung according to the draft NIOSH method 8200 modified to accommodate the 

sample matrix (NIOSH 2003).   

Gross lung tumor counts and histopathology 
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At 30 weeks post-exposure, A/J mice were euthanized with Fatal Plus [100-300 mg/kg 

IP; 390 mg/ml pentobarbital sodium] (Vortech Pharmaceuticals, Dearborn, MI), weighed, and 

then the vena cava was cut to exsanguinate the animal. All internal organs were examined for the 

presence of tumors. The whole lung was then excised. All tumors were clearly defined with no 

apparent merged tumors. The lungs were inflated and fixed with 10% neutral buffered formalin 

for 24 h. Tumors were counted and measured 24 h after fixation. Lungs were embedded in 

paraffin, then a 5 µm standardized section was cut. Slides were stained with hematoxylin and 

eosin and interpreted by two separate, contracted, board certified veterinary pathologists in a 

blinded fashion for evidence of hyperplasia and neoplasia, inflammation, lymphoid tissue 

response, and foreign materials by light microscopy. Diagnostic criteria for hyperplastic and 

neoplastic findings were according to goRENI (http://www.goreni.org/), the standard reference 

for nomenclature and diagnostic criteria in toxicologic pathology and at the same time the 

Internet discussion platform for the global initiative "INHAND" - the International 

Harmonization of Nomenclature and Diagnostic criteria [13, 14]. If abnormal changes were 

found, severity was scored using the following scale: 1=minimal, 2=mild, 3=moderate, 

4=marked. The final severity score reflects the average of the right and left lung lobe scores and 

are presented as means ± standard error. Because bronchiolo-alveolar hyperplasia (BAH) and 

bronchiolo-alveolar adenomas (BAA) represent a continuum of the proliferative process and 

there is possible overlap between these diagnoses, the numbers of lesions were combined to 

compare the oncogenic potential of each treatment [14]. However, the gross tumor count at 

necropsy is more representative of the response because examination of a single histological 

section per lung underestimates the total number of lesions per lung [15]. 

Statistical comparisons and analysis  
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Statistical analyses were performed using JMP version 12. Factorial analysis of variance 

(ANOVA) was utilized on continuous variables to make comparisons between the treatment 

groups. For some variables a log transformation was performed on the data to reduce 

heterogeneous variance and meet the assumptions of an ANOVA. Gross tumor counts and 

histopathology counts from sections were analyzed similarly. Tumor incidence (presence or 

absence of tumors) was analyzed using a chi-square test in SAS ‘Proc Freq’, while tumor 

multiplicity (number of tumors per lung) was analyzed using Poisson regression in SAS ‘Proc 

Genmod’. In cases where overdispersion existed, a negative binomial regression was 

performed.  Analyses were performed independently on CO and MCA treated animals, and only 

utilized data from those animals surviving to the 30 week time point. For all analyses, a p-value 

of <0.05 was set as the criteria for significance 

Results 

Welding fume characteristics 

A summary of the characteristics of GMA-SS welding fume and images of the fume are 

presented in Figure 2.  Particle mass size distribution was measured for this newer configuration 

using a Micro-Orifice Uniform Deposit Impactor (MOUDI, model 110; MSP corp., Shoreview, 

Minn.) with additional Nano-MOUDI stages (MSP model 115). The mass median aerodynamic 

diameter (MMAD) was 350 nm. The count-based particle size distributions of the particles were 

measured using a Scanning Mobility Particle Sizer (SMPS model 3936, TSI Inc, Shoreview, 

MN). The SMPS estimated the count median aerodynamic diameter to be 230 nm. Particle 

imaging was achieved with a scanning electron microscope (SEM; JEOL 6400, JEOL Inc). 

Inspection of physical characteristics of the particles showed many small nano-spheres (10 to 50 

nm) linked together into long chain like structures often with several branches. Elemental 
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analysis of the welding particles were previously measured [10]. The overall particulate fume 

was composed of 57% Fe, 20.2% Cr, 13.8% Mn, 8.8% Ni, 0.2% copper (Cu) and trace amounts 

of silicon (Si), aluminum (Al), and vanadium (V). Hexavalent chromium (Cr (VI)) levels were 

also measured and determined to be 2929 ppm. GMA-SS welding fume is largely water 

insoluble with a soluble: insoluble ratio of 0.006 [16].   

Lung metal deposition after GMA-SS welding fume inhalation 

Shown in Table 1 is the lung metal deposition in A/J mice after 4 h of inhalation of 

GMA-SS welding fume. The most abundant metal measured in the lung was Fe followed by Cr, 

Mn, Ni, and Cu, as predicted from the previous characterization of this fume [12]. The metal 

analysis by weight % of the whole lungs (60 % Fe, 17 % Cr, 14 % Mn, 8 % Ni, and 0.8 % Cu) 

agrees with the weight % of collected fume.  

The analysis of the metals shows a cumulative increase of ~10.1 μg of total GMA-SS 

fume deposited in the lung from a single 4 h exposure. The alveolar deposition in the mice was 

equated to the human by the equations below using the previous threshold limit value-time 

weighted average (TLV-TWA) of 5 mg/m3 for total welding fume and the PEL of 5 µg/m3 for 

Cr(VI). Previously, we estimated that 70% of the total dose reached the alveolar space (10.1 µg/d 

x 0.70 = 7.07 µg/d) [17, 18]. The mice were exposed for 36 days (9 w at 4 d/w) for an 

approximate total alveolar deposition of 254.5 µg. 

Factored for human dose using previous welding fume TLV of 5 mg/m3: 

Fume concentration x min volume x exposure duration x deposition efficiency = deposited 

human dose 

5 mg/m3 x (20 L/min)(10-3 m3/L) x (8 h/day)(60 min/h) x 0.16 = 7.7 mg deposited per 8 h day 

in humans 
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Human equivalent dose to mouse by alveolar surface area (SA) [19] 

(SAhuman x Depositionmouse) / SAmouse = Depositionhuman 

(102 m2 x 0.00707 mg) / 0.05 m2 = 14.4 mg (~2 fold greater: 14.4 / 7.7) 

Factored for human dose using Cr(VI) PEL of 5 μg/m3: 

Cr(VI) concentration x min volume x exposure duration x deposition efficiency) = deposited 

human dose 

5 μg/m3 x (20 L/min)(10-3 m3/L) x (8 h/day)(60 min/h) x 0.16 = 7.7 μg deposited per 8 h day in 

humans 

In the GMA-SS fume, Cr(VI) was 0.29% of the total welding fume [10, 20]. Using our alveolar 

deposition dose of 7.07 μg roughly 0.0205 μg (7.07 x 0.0029) would be Cr(VI). 

Human equivalent dose to mouse by SA: 

(SAhuman x Depositionmouse) / SAmouse = Depositionhuman  

(102 m2 x 0. 0205 μg) / 0.05 m2 = 41.8 μg (~5 fold greater: 41.8 / 7.7) 

Morbidity and mortality 

A timeline of the experimental protocol for the two-stage (initiation-promotion) 

carcinogenesis model is shown in Figure 1.  Initial body weights at week 0 (means ± standard 

error [SE]) were 18.56 ± 0.35, 19.1 ± 0.39, 18.25 ± 0.31, and 19.05 ± 0.36 for the CO/air, 

CO/GMA-SS, MCA/air, and MCA/GMA-SS groups, respectively. Body weights increased 

steadily and were not changed due to exposure from week 0 to 30 with 10.26 ± 0.58, 9.46 ± 0.56, 

11.38 ± 0.65, 9.78 ± 0.61 for the CO/air, CO/GMA-SS, MCA/air, and MCA/GMA-SS groups, 

respectively.  Morbidity and mortality throughout the study was low (~5 %) and no 
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abnormalities, such as other tumor types besides lung, were found at the terminal sacrifice at 30 

weeks. In total, 6 mice died during the course of the study and were not included in the final 

analysis of the data. Necropsy determined that all 6 mice died from typical morbidities that 

included enlarged heart or otherwise undetermined.  

Gross tumor multiplicity and incidence  

GMA-SS welding fume significantly promoted lung tumors in the A/J mouse 30 weeks 

after initiation with MCA. The grossly observed tumor multiplicity (average tumor 

number/mouse lung ± SE) for all groups is shown in Figure 3. There was no effect of welding 

fume alone on tumor multiplicity (CO/air, 0.32 ± 0.10; CO/GMA-SS, 0.45 ± 0.13; p = 0.44). In 

animals initiated with MCA, tumor multiplicity was 7.93 ± 0.82 and 16.11 ± 1.18 for air and 

GMA-SS, respectively (p < 0.0001). Average tumor incidence (% of tumor-bearing mice) was 

29% in CO/air and 38% in CO/GMA-SS-exposed animals.  Reports in the literature indicate the 

background tumor frequency in A/J mice between 43 and 53 weeks to be 31-40% [21, 22]. The 

mice in this study were 35 or 36 weeks old upon sacrifice, indicating the observed tumor 

incidence is consistent with the literature. As expected, tumor incidence was >96% in all MCA-

initiated groups (n = 29 for MCA/air and n = 28 for MCA/GMA-SS groups) which confirmed 

successful experimental administration as well as its carcinogenic effectiveness in A/J mice. 

Total and average tumor number per treatment group across each of the individual lung regions 

is described in Table 2. MCA/GMA-SS-exposed mice had significantly greater lung tumor 

multiplicity in every lung region compared to MCA/air (p < 0.009). There was no difference 

between CO/air and CO/GMA-SS groups (p = 0.44). 

 Gross lung morphology from a GMA-SS-exposed mouse initiated with MCA is shown in 

Figure 4. Welding fume deposition was visible in exposed mouse lungs and appeared black-



www.manaraa.com

60 

 

brown in color.  Tumors appeared white in color and opaque on initial gross exam and became 

more well-defined after fixation which aided enumeration. At 30 weeks, tumors were between 

~0.5 mm and ~3 mm, with most tumors ~1 mm.  

Histopathological evaluation of lung lesions, inflammation, and welding fume presence 

CO/air animals had no lymphoid infiltrate or foreign material (brown-black pigment, i.e., 

welding fume) and hyperplasia was unremarkable (0.09 ± 0.05). There were 5 total lesions reported 

in the CO/air group. The CO/GMA-SS-exposed group had minimal, but significant, lymphoid 

infiltrates (0.22 ± 0.063; p < 0.03) and foreign material (1.86 ± 0.07; p < 0.03) compared to CO/air. 

There were 2 total hyperplastic lesions reported in this group. Welding fume, indicated by black-

brown foreign material presence in the lungs, was found in both GMA-SS-exposed groups (CO 

and MCA) in every lung section. Significant hyperplasia (1.20 ± 0.11; p < 0.03) and increased 

total preneoplastic/neoplastic lesions (BAH and BAA) were reported in the MCA/GMA-SS 

animals compared to MCA/air animals (114 versus 70; p < 0.03). Histopathological assessment of 

the lungs from a separate, second board certified veterinary pathologist confirmed these findings 

(Table 3). The total number of proliferative lesions for MCA/GMA-SS-exposed mice was 153 

compared to 90 for MCA/air. Increased perivascular mononuclear infiltrate in the MCA/GMA-SS 

group consisting of small aggregates or cuffs of lymphocytes, sometimes mixed with a few plasma 

cells, adjacent to or around multiple scattered vessels was also reported. This infiltrate was not 

observed in any of the MCA/air lungs. Because there were no significant findings in the CO groups 

besides evidence of welding fume and minimal lymphoid infiltrates in GMA-SS-exposed mice, a 

second evaluation was not deemed necessary. Figure 5a demonstrates a BAA and two areas of 

BAH. Figure 5b shows the adenoma in panel a at 20x magnification adjacent to areas of welding 

fume deposition. Panels c and d demonstrate a BAA at 40x and BAH at 20x, respectively. The 
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BAA were more compact nodules composed of enlarged Type II cells that obscured the normal 

tissue morphology. These benign neoplasms had a smooth margin that frequently caused 

compression of surrounding tissue. The cells sometimes had prominent nucleoli and frequently 

formed radiating proliferations around blood vessels. BAH were round to irregular in shape with 

increased numbers of Type II cells lining alveolar septae. The cells were of normal size and normal 

tissue architecture was retained. The margins of these lesions were irregular and did not cause 

compression of surrounding tissues. Because BAH and BAA represent a continuum of the 

proliferative process and there is possible overlap between these diagnoses, the number of lesions 

were combined to compare the tumorigenic potential of each treatment [14]. In addition, the 

number of adenomas in the MCA/GMA-SS group was significantly greater than in the MCA/air 

group (p<0.05; Table 3) [23]. 

Discussion  

This study was the first to find that inhalation of GMA-SS welding fume can promote 

lung tumorigenesis in vivo. Tumor multiplicity increased two-fold after initiation with the 

chemical initiator MCA. Histopathology analysis confirmed the gross findings and showed a 

significant increase in lung adenomas and combined adenomas and hyperplastic lesions in 

welding fume-exposed animals. In addition, welding fume exposure increased inflammatory 

infiltrates. Interestingly, the tumorigenic potential of the inhaled welding fume was achieved at a 

significantly lower total-deposited dose compared to our previous oropharyngeal aspiration 

exposure in mice [10]. The results of this study further support the epidemiological findings of 

an association between lung cancer and welding.  

The measured lung deposition following welding fume exposure in this study after a 

single (4 h) exposure was 10.1 µg, or a cumulative dose of 254.5 µg in the lung alveolar region 

(see calculation in results). This dose represents approximately two times the former TLV-TWA 



www.manaraa.com

62 

 

of 5 mg/m3 for 8 h/d, a level commonly exceeded in the workplace [3]. This exposure in terms of 

the TLV is equivalent to 14 weeks (36 days of exposure x 2 = 72 days) of constant exposure to 

GMA-SS fume for 8 h/d. If a welder was exposed to GMA-SS fume for 5% (1/20) of their 

working time at the maximum concentration, then the exposure would be 280 weeks (14 weeks x 

20), or 5.6 years. Therefore, the deposited dose in our study is occupationally relevant because 

epidemiologic research has demonstrated a 70% increase in the risk of lung cancer among 

workers who welded for at least 5% or more of their working time [5].   

Our lab previously demonstrated that at 78 weeks post-oropharyngeal aspiration, lung 

tumor incidence in A/J mice approached significance (p = 0.057; n=16) and a trend for increased 

tumor multiplicity was found after exposure to GMA-SS welding PM alone [24]. In a follow up 

study, GMA-SS welding fume delivered via oropharyngeal aspiration significantly increased 

tumor multiplicity at 30 weeks post-initiation using a two-stage (initiation-promotion) model 

with the chemical initiator MCA [10]. These preliminary studies suggest that GMA-SS fume 

may be a weak carcinogen in A/J mice; however, oropharyngeal aspiration is considered to be 

less relevant to a real-world exposure because it delivers a bolus exposure to the lung, potentially 

overestimating the hazard. Inhalation studies are an important next step as they closely resemble 

the occupational route of exposure in welders and avoid this potential bolus effect. Inflammation 

is well-known to be a hallmark of cancer, and epidemiologic studies have indicated nearly a 

quarter of human cancers are associated with inflammation [25, 26]. Our lab demonstrated that 

inhalation and oropharyngeal aspiration induce different inflammatory responses in A/J mice, 

suggesting these exposure methods may also differ in their ability to promote lung tumor 

formation [9, 24]. Inhalation of GMA-SS welding fume causes a delayed rise in PMN compared 

to aspiration and also induces a more complex cytokine profile. A potential explanation for the 
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differing inflammatory responses between oropharyngeal and inhalation exposure is the dose rate 

at which fume is deposited [27, 28]. Former studies have indicated that the dose rate is an 

important determinant of the acute inflammatory response in the respiratory tract. Baisch et al. 

demonstrated a higher inflammatory response in F-344 rats following intratracheal instillation of 

TiO2 compared with an equivalent dose delivered via inhalation. Our former aspiration protocol 

delivered five bolus doses of 340 µg or 680 µg (1.7 or 3.4 mg cumulative) of GMA-SS welding 

PM once a week for 5 weeks [10]. In this study, inhalation exposure deposited ~10 µg per day 

(or 360 µg estimated total) over 36 days. Despite this much lower calculated total lung burden 

and dose rate, we found a significant lung tumor promotion for inhalation of welding fume as 

was also observed with  high dose rate delivery oropharyngeal aspiration in our previous study. 

The objective of the present study was to identify if GMA-SS fume at a reasonable exposure 

level is a tumor promoter. Limitations must be noted when comparing lung tumor multiplicity 

rates from this and our previous study published in 2013. Indeed, the present study reports results 

for only a single total inhaled dose, limiting its usefulness in determining thresholds and dose-

response effects. Also, the particle deposition patterns may differ (e.g. upper airways) between 

the inhalation and oropharyngeal aspiration exposure routes.   

Interestingly, “fresh” GMA-SS welding fume as delivered via inhalation is more reactive 

than “aged” welding fume which is used for oropharyngeal aspiration studies [11]. Aged fume 

has shown to be less inflammatory because it generates significantly less reactive oxygen species 

than freshly generated welding fume that is used for inhalation studies or generated in the 

workplace. As such, welding fume is 6 to 9 times more potent when delivered by inhalation 

rather than oropharyngeal aspiration [9, 24, 29]. Although the metals are deposited in a lower 

amount with inhalation, their increased potency may make them more available for DNA 
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damaging effects. Genomic mutations and instability are known enablers of carcinogenesis [30]. 

Cancer cells often increase their rates of mutation in order to acquire the hallmarks of inducing 

angiogenesis, resisting cell death, sustaining proliferative signaling, enabling replicative 

immortality, evading growth suppressors, and activating invasion and metastasis. The heightened 

free radicals and oxidative stress that occurs with welding fume inhalation exposure independent 

of dosing rate may also potentially contribute to tumorigenicity [31]. Therefore, it is likely that 

the amount of carcinogenic metals in the welding fume may not be the only factor contributing to 

the formation of lung cancer.   

At 30 weeks post-initiation, adenomas and proliferative bronchiolo-alveolar epithelial 

lesions were the most commonly observed microscopic lung pathologies. This finding is 

consistent with the literature and our previous observations in A/J mice of this age [24, 32]. In 

humans, lung cancers are more diverse than in mice and adenocarcinoma is the most common 

diagnosis. The adenomas in A/J mice are relevant to the production of adenocarcinomas in 

humans as these lung adenomas are often the direct precursor to lung adenocarcinomas. 

Likewise, human and A/J mouse tumors both often arise in the context of atypical hyperplasia in 

the periphery of the lung [33-36]. Thus, the A/J mouse is a very useful and relevant model to 

study welding fume toxicity and lung tumorigenesis.   

In conclusion, the current research suggests that SS welding fume may serve as a 

promoter of chemically-initiated lung tumors in the A/J mouse model. Future studies will be 

directed at investigating additional types of welding fumes. Nearly 90% of welding processes use 

mild steel (MS) while 10% or less use SS [1]. However, SS welding is still widely utilized as it 

offers increased protection from corrosion and rusting to which other metals are susceptible [20]. 

Unlike SS electrodes, MS electrodes are comprised mainly of the non-carcinogenic metals Fe 
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and various concentrations of Mn. Interestingly, both MS and SS fumes have been linked 

epidemiologically to lung cancer in welders. Future studies will focus on MS inhalation using a 

two stage initiation-promotion model in A/J mice as reported here. 
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Figure Legends 

Figure. 1 Experimental protocol and block design for two-stage initiation-promotion lung 

tumorigenesis model in A/J mice. A/J mice, 120 in total, were randomized and separated into 

four blocks of n = 7 or 8 per exposure group.  Mice received intraperitoneal (IP) injections of 

either MCA or corn oil and one week later were exposed to GMA-SS welding fume (40 mg/m3) 

or air for 4 h/d, 4 d/w, for 9 w. Animal weights were recorded weekly. At 30 weeks, mice were 

sacrificed for tumor multiplicity and incidence and histopathological studies   

Figure 2 GMA-SS welding fume characteristics.  Panels a and b are SEM images depicting 

small nano-spheres (10 to 50 nm) linked together in long chain-like structures often with several 

branches. The bottom panels show the particle size distribution of the generated welding fume in 

terms of the mass median aerodynamic diameter (MMAD) (c) and estimated count median 

aerodynamic diameter (d) 

Figure 3 Lung tumor multiplicity upon gross examination in A/J mice promoted with air or 

GMA-SS welding fume.  At 30 weeks, MCA initiation followed by GMA-SS welding fume 

exposure increased lung tumor multiplicity (average tumor number/mouse lung) significantly 

above MCA/air exposed animals (7.93 ± 0.82 and 16.11 ± 1.18, respectively). * p <0.0001 – 

compared to CO/air, ** p <0.0001 – compared to MCA/air      

Figure 4 Gross images of lung tumors promoted by GMA-SS welding fume 30 weeks after 

initiation with MCA.  Panel a shows lung tumor morphology before fixation and panel b 

represents tumors 24 h post-fixation. Asterisks (*) indicate areas of welding fume deposition and 

arrows indicate lung tumors.  Most tumors were ~1 mm in diameter  
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Figure 5 Photomicrographs of lung tissue from MCA/GMA-SS exposed mice.  Panel a 

shows a bronchiolo-alveolar adenoma and two areas of bronchiolo-alveolar hyperplasia in the 

lung at 2x magnification. Panel b demonstrates the adenoma in panel a at 20x magnification. 

Panel c shows a bronchiolo-alveolar adenoma at 40x magnification. Cells are enlarged and 

forming a compact mass that obscures normal architecture and causes compression of adjacent 

tissue. Panel d shows a bronchiolo-alveolar hyperplasia in the lung at 20x magnification. Arrows 

depict brown pigment (welding fume particles) within alveolar macrophages. H&E stain 
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Figures 

Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Figure 5.  
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Tables 

Table 1. Lung metal deposition in A/J mice after stainless steel welding fume inhalation for 4 h 

at a target concentration of 40 mg/m3  

Exposure Cr (µg/lung) Cu (µg/lung) Fe (µg/lung) Mn (µg/lung) Ni (µg/lung) 

Air 0.02 ± 0.01 0.22 ± 0.03 8.97 ± 0.36 0.02 ± 0.00 0.01 ± 0.00 

GMA-SS 1.65 ± 0.05 0.32 ± 0.01 15.12 ± 0.39 1.48 ± 0.04 0.82 ± 0.02 

  

Freeze-dried whole lung tissue was analyzed for aluminum (Al), chromium (Cr), copper (Cu), 

iron (Fe), manganese (Mn), nickel (Ni), titanium (Ti), and zinc (Zn) by Inductively Coupled 

Plasma-Atomic Emission Spectroscopy. Samples were prepared according to draft NIOSH 

Analytical Method 8200 for bulk tissue samples. Trace amounts of Al, Ti, and Zn were found.  

In cases in which no result was measured, the limit of quantification (LOQ) was used in 

calculating the average deposition. Note:  Values are mean ± standard error of the mean (n=10 

air; n=25 GMA-SS); GMA-SS – gas metal arc-stainless steel welding fume.    
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Table 2. Total and average (in parenthesis) tumor number across individual lung lobes following 

GMA-SS welding fume inhalation exposure 30 weeks post-initiation with MCA or corn oil  

 

GMA-SS: gas metal arc- stainless steel, MCA: 3-methylcholanthrene 

*p < 0.0001- compared to Corn oil/air 

**p < 0.009 -compared to MCA/air 

 

 n Left Apical Cardiac Diaphragmatic Azygos 

Corn oil/air 28 3 (0.11 ± 0.06) 3 (0.11 ± 0.06) 0 3 (0.11 ± 0.06) 0 

Corn oil/GMA-SS 29 5 (0.17 ± 0.07) 1 (0.03 ± 0.03) 0 5 (0.17 ± 0.09) 2 (0.07 ± 0.05) 

MCA/air 29 78 (2.69 ± 0.39)* 30 (1.03 ± 0.20)* 25 (0.86 ± 0.15)* 67 (2.31 ± 0.36)* 30 (1.03 ± 0.25)* 

MCA/GMA-SS 28 150 (5.35 ± 0.54)** 68 (2.43 ± 0.42)** 63 (2.25 ± 0.35)** 110 (3.93 ± 0.37)** 60 (2.14 ± 0.32)** 
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Table 3. Severity scores for abnormal morphological findings and numbers of adenomas and 

hyperplastic lesions observed in lung sections of A/J mice exposed to GMA-SS welding fume by 

inhalation at 30 weeks post-initiation with MCA  

 

GMA-SS: gas metal arc-stainless steel, MCA: 3-methylcholanthrene. 

* Severity scores are the averages of the left and right lung lobes and are presented as mean + 

standard error.  Lymphoid infiltrates represents perivascular and peribronchiolar mononuclear 

cells. Foreign material refers to the presence of brown pigment in the lungs. Severity was scored 

as 1 = minimal, 2 = mild, 3 = moderate, 4 = marked.     

-- indicates no findings 

**p < 0.0002 – compared to MCA/air 

ǂp < 0.004 – compared to MCA/air   

^ p < 0.05 – compared to MCA/air 

 

 

 
Lymphoid 

Infiltrates* 

Foreign 

material* 

Hyperplasia 

Severity* 
Hyperplasia Adenoma  Total lesions 

MCA/air -- 0.03 + 0.03 1.41 + 0.19 70 20  90 

MCA/GMA-SS 0.34 + 0.07** 1.5 + 0.08** 1.86 + 0.19 119ǂ 34^  153ǂ 
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Abstract 

Welding fumes were reclassified as a Group 1 carcinogen by the International Agency for 

Research on Cancer (IARC) in 2017. Gas metal arc welding (GMAW) is a process widely used 

in industry. Fume generated from GMAW-mild steel (MS) is abundant in iron with some 

manganese, while GMAW-stainless steel (SS) fume also contains significant amounts of 

chromium and nickel, known carcinogenic metals. It has been shown that exposure to GMAW-

SS fume in A/J mice promotes lung tumors. The objective was to determine if GMAW-MS 

fume, which lacks known carcinogenic metals, also promotes lung tumors in mice. Male A/J 

mice received a single intraperitoneal injection of corn oil or the initiator 3-methylcholanthrene 

(MCA; 10 µg/g) and, one week later, were exposed by whole-body inhalation to GMAW-MS 

aerosols for 4 hours/day x 4 days/week x 8 weeks at a mean concentration of 34.5 mg/m3. Lung 

nodules were enumerated by gross examination at 30 weeks post-initiation. GMAW-MS fumes 

significantly promoted lung tumor multiplicity in mice initiated with MCA (21.86 ± 1.50) 

compared to MCA/air-exposed mice (8.34 ± 0.59). Histopathological analysis confirmed these 

findings and revealed absence of inflammation. Bronchoalveolar lavage analysis also indicated a 

lack of lung inflammation and toxicity after short-term inhalation exposure to GMAW-MS fume. 

In conclusion, this study demonstrates that inhalation of GMAW-MS fume promotes lung tumors 

in vivo and aligns with epidemiologic evidence that shows MS welders, despite less exposure to 

carcinogenic metals, are at an increased risk for lung cancer.  

Keywords: mild steel, welding, inhalation, iron, A/J mice 
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Introduction 

Welding fumes were recently reclassified as carcinogenic to humans (Group 1) by the 

International Agency for Research on Cancer (IARC) based on strong epidemiological evidence 

and limited evidence in animals [1]. It is estimated that 11 million workers worldwide weld full-

time and an additional 110 million have had some type of welding-related exposure [1]. Arc 

welding, including one type known as gas metal arc welding (GMAW), is the most common 

industrial welding process. In GMAW, an electric arc is established between a work piece and a 

consumable wire electrode [2, 3]. High temperatures create a molten pool into which the 

electrode is continuously fed and the work pieces are fused together as temperatures cool. While 

this process is the strongest method of joining metals, it creates a significant amount of welding 

fume. The composition of the fume largely depends on whether a stainless steel (SS) or mild 

steel (MS) electrode is used. GMAW-SS fume contains largely iron (Fe), chromium (Cr), nickel 

(Ni), copper (Cu), and manganese (Mn), whereas GMAW-MS contains primarily Fe and Mn. 

Most experimental studies have focused on the presumably more toxic Cr and Ni and largely 

overlooked Fe when examining pulmonary toxicity and/or carcinogenicity of welding fume. 

Importantly, many epidemiological studies suggest that both GMAW-SS and GMAW-MS are 

associated with increased risk of lung cancer, even though GMAW-MS exposure is 

predominantly limited to Fe and Mn [4, 5]. Some studies are conflicting, however [6]. Welding 

exposures are complex because of the diversity of welding modalities used in the workplace and 

the potential for confounders or additional occupational exposures [2, 7]. Welders often perform 

multiple types of welding processes throughout their working lifetime, further complicating 

epidemiological studies. Therefore, controlled animal studies are crucial to better understand 

which welding fumes and their component metals are the most toxic and have the greatest 

tumorigenic potential.  
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It was previously shown that GMAW-SS fume persists in the lung for 1.5 years and 

triggers mild, chronic inflammation in lung tumor-susceptible A/J mice compared to other 

welding fumes [8]. In a two-stage initiation-promotion model of lung tumorigenesis, GMAW-SS 

fume significantly increased lung tumor multiplicity after both an oropharyngeal aspiration and 

inhalation exposure in A/J mice [9, 10]. It was also demonstrated that GMAW-MS increased 

lung toxicity as measured by elevated lactate dehydrogenase (LDH) levels in mice 2 and 7 days 

after an oropharyngeal aspiration exposure [11]. However, GMAW-SS had a greater cytotoxic 

effect than GMAW-MS. Similarly, studies in rats have indicated that GMAW-MS seems to be 

less toxic than GMAW-SS [12-14]. Antonini et al. found that GMAW-MS caused no lung 

inflammation or lung injury in Sprague-Dawley rats 1, 4, or 11 days post-inhalation compared to 

GMAW-SS, which caused significant lung damage [12, 13].   

It is well known that certain conditions associated with iron-overloaded states lead to an 

increased risk of cancer. While iron plays a vital role in redox reactions and as a cofactor for 

enzymatic reactions in the body, too much iron can increase cancer risk via the production of 

reactive oxygen species [15, 16]. Asbestosis, hemochromatosis, myelodysplastic syndromes, and 

endometriosis are all diseases in which there is iron excess and increased risk of cancer [17, 18]. 

Epidemiologic studies concerning iron oxide exposures and lung cancer are conflicting. An early 

study of iron ore miners found that these workers had a 70% greater mortality of lung cancer 

than the general population [19]. Yet, other reports suggest that iron oxide is not a human 

carcinogen [20, 21]. An early in vivo study by Campbell 1940 found an increase in lung 

carcinomas in mice exposed to iron oxide [22]. Regardless, in vivo studies investigating 

occupational exposures to iron oxides, as occurs with mild steel welding, are lacking. In this 
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study, we aimed to characterize the lung toxicity of GMAW-MS, which contains primarily Fe, 

and determine if it could promote lung tumors in mice following inhalation exposure.   

Methods 

Animals 

Male A/J mice (age 4–5 week) were purchased from Jackson Laboratories (Bar Harbor, 

ME) and housed in an AAALAC International - specific pathogen-free, environmentally-

controlled facility. All mice were free of endogenous pathogens including viruses, bacteria, 

mycoplasmas, and parasites. Mice were housed in groups of two in ventilated cages and provided 

high-efficiency particulate filtered air under a controlled light cycle (12 h light/12 h dark) at a 

standard temperature (22-24⁰C) and 30-70% relative humidity. Animals were acclimated to the 

animal facility for one week before beginning the experimental protocols and allowed access to a 

conventional diet (6% irradiated NIH-31 Diet, Envigo RMS, Inc.; Madison, WI) and tap water 

ad libitum. All procedures were performed using protocols approved by the National Institute for 

Occupational Safety and Health (NIOSH) Institutional Animal Care and Use Committee.  

Welding fume inhalation exposure system 

The design and construction of the welding fume aerosol generator were previously 

described [23]. This automated robotic welder continuously generated welding fumes by welding 

beads onto ¼ inch thick plates of mild steel. The welding wire used was 0.045 inch diameter 

Lincoln Electric Super Arc MIG L56 and the welding parameters were set to 25 volts DC, 300 

inch per minute wire feed, 30 L/min of 95% argon – 5% CO2 shielding gas, and a typical 

welding current of 220 amps. The resulting fume was carried into a whole body exposure 

chamber through a ¾ inch flexible tube by maintaining the chamber at a negative pressure (0.70 

inch H2O). Particle concentrations within the exposure chamber were continuously monitored 
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with a Data RAM (DR-40000 Thermo Electron Co; Franklin, MA), and gravimetric 

determinations (37 mm cassettes with 0.45 μm pore-size Teflon filters) were used to calibrate 

and verify the Data RAM readings each day. Gas generation, including carbon monoxide (CO), 

carbon dioxide (CO2), oxygen (O2), and ozone (O3), was continuously monitored. During the 

welding exposure, O2 levels were maintained above the OSHA minimal acceptable level. O3, CO, 

CO2 were below OSHA permissible exposure limits and NIOSH recommended exposure limits 

(REL) during the entire exposure duration. In the exposure chamber, CO and O3 levels were not 

significantly higher than background. The exposure system was modified slightly from that 

described previously to reduce the travel time of the particulate fume from the welding torch to 

the exposure chamber [23].  

Welding fume metal analysis 

A small amount of welding fume was collected gravimetrically onto 47-mm Nucleopore 

polycarbonate filters (Whatman; Clinton, PA) for field emission scanning electron microscopy 

(FESEM) to assess particle size and morphology. The particles were imaged using a Hitachi 

S4800 Field Emission Scanning Electron Microscope (Hitachi; Tokyo, Japan). For elemental 

analysis of GMAW-MS fume, generated particles were collected inside the exposure chamber 

onto 5.0 µm polyvinyl chloride membrane filters in 37-mm cassettes during three 30 minute 

collections. The particle samples were digested and the metals were analyzed by inductively 

coupled plasma atomic emission spectroscopy according to the NIOSH method 7303 for hot 

block/HCL/HNO3 digestion (NIOSH, 1994) as previously described [23]. Metal content of blank 

filters also were analyzed for control purposes. 

Experimental protocol for whole lung metal analysis 
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Weight-matched A/J mice were exposed by whole-body inhalation in individual steel 

mesh cages to GMAW-MS welding aerosols (mean concentration 36.4 mg/m3 over 4 hours) (n = 

10) or filtered air (n = 10) (Figure 1A). Immediately following exposure (time zero), whole lungs 

were excised, trimmed, and lyophilized. The freeze-dried tissue was weighed then acid digested. 

Inductively coupled argon plasma atomic emission spectroscopy at NIOSH-Division of Applied 

Research and Technology (Cincinnati, OH) was used to determine the amount of Al, Cr, Cu, Fe, 

Mn, Ni, Zn present in the lung according to the NIOSH method 7300 modified to accommodate 

the sample matrix (NIOSH 2003).   

Experimental protocol for two-stage lung carcinogenesis assay in A/J mice 

For the two-stage initiation-promotion protocol, 120 mice were weight-matched and 

randomized into four exposure groups (n = 30/group). On day 1, mice were intraperitoneally (IP) 

injected with the chemical initiator, 3-methylcholanthrene (MCA) (Sigma-Aldrich; St. Louis, 

MO) dissolved in corn oil (CO) (Sigma-Aldrich; St. Louis, MO) at a dose of 10 µg/g of body 

weight or CO alone (Figure 1B). MCA was chosen as the initiating agent based on the efficient 

response of the A/J mouse to this carcinogen in our previous oropharyngeal aspiration and 

inhalation studies [10, 24]. Beginning 1 week post-initiation, mice were exposed by whole-body 

inhalation to GMAW-MS aerosols or filtered air for 4 hours/day, 4 days/week, for 8 weeks at a 

target concentration of 40 mg/m3 (actual mean concentration 34.5 mg/m3 over 8 weeks). 

Throughout the study, mice were weighed biweekly including at the terminal sacrifice at 30-

weeks post-initiation. Mice were euthanized with sodium pentobarbital [100-300 mg/kg IP] 

(Vortech Pharmaceuticals; Dearborn, MI), weighed, and exsanguinated via the vena cava. All 

internal organs were examined for the presence of tumors. Then, the whole lung was excised and 

inflated with 10% neutral buffered formalin.  Twenty-four hours post-fixation, lung tumors were 
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counted. Lung tumor incidence was recorded as the percent of tumor-bearing mice out of the 

total. Lung tumor multiplicity was determined as the average tumor number per mouse lung 

including mice with no tumors. Any apparent merged tumors were counted as one tumor. Lungs 

were embedded in paraffin before a 5 µm standardized section was cut and slides were made. 

Slides were stained with hematoxylin and eosin, and a contracted, board-certified 

veterinary pathologist observed the slides in a blinded fashion for evidence of hyperplasia or 

neoplasia, inflammation, lymphoid tissue response, and foreign materials by light microscopy. 

The diagnosis of alveolar hyperplasia, adenoma, and adenocarcinoma was based upon well-

established criteria [25]. If abnormal changes were found, severity was scored as: 1 = minimal, 2 

= mild, 3 = moderate, 4 = marked. Severity of hyperplasia was graded based upon the overall 

size of the lesion, and ranged from small foci, which were graded as minimal, to large foci, 

which were graded as marked. The severity of the hyperplasia was recorded as the severity of the 

most severe lesion seen in each lung. The final severity score reflects the average of the right and 

left lung lobe scores and is presented as means ± standard error. Because bronchioloalveolar 

hyperplasia (BAH), bronchioloalveolar adenomas (BAA), and bronchioloalveolar 

adenocarcinomas (BAC) represent a continuum of the proliferative process, and there is possible 

overlap between these diagnoses, the numbers of lesions were combined to compare the 

tumorigenic potential of each treatment [25]. However, examination of a single histological 

section per lung underestimates the total number of lesions per lung, making the gross tumor 

count at time of sacrifice more indicative of the actual response [26]. 

Experimental protocol for bronchoalveolar lavage (BAL) and biochemical measurements 

of lung toxicity  
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For the BAL and lung toxicity protocol, 64 male A/J mice were exposed to filtered air or 

GMAW-MS fume at a target concentration of 40 mg/m3  (actual mean concentration 36.28 

mg/m3) for 4 hours/day for 10 days (Figure 1C). Whole-lung BAL was used to assess lung injury 

and inflammation at 1, 7, 28, and 84 days post-exposure (n = 8 per treatment group per time 

point). Mice were anesthetized with sodium pentobarbital (100-300 mg/kg IP; Vortech 

Pharmaceuticals) then weighed. Once unresponsive, blood was drawn from the vena cava and 

serum was frozen at -80 °C. The mouse was then exsanguinated. For BAL, the trachea was 

cannulated with a blunted 22 gauge needle, and the thorax was massaged as 0.6 ml of cold 

calcium and magnesium-free phosphate buffered saline (PBS) was instilled into the lungs. The 

thorax was massaged for 10 seconds before the fluid was withdrawn and placed in a 15 ml 

conical tube. This consisted of the first lavage fraction. BAL was repeated 3 times using 1 ml of 

PBS per instillate and this second fraction was collected in a separate 15 ml conical tube. The 

BAL fluid was preserved on ice then centrifuged at 500 x g, 10 min, and 4°C. The acellular 

supernatant of the first lavage fraction was used to measure lactate dehydrogenase (LDH) 

activity, indicative of lung cytotoxicity. LDH activity was analyzed using a COBAS MIRA Plus 

auto-analyzer (Roche Diagnostic Systems; Montclair, NJ) which measured the oxidation of 

lactate to pyruvate coupled with the formation of NADH at 340 nm. The supernatant from the 

second lavage fraction was discarded. The cell pellets of both fractions were combined and 

resuspended in 800 µl of PBS. This final cell pellet was used for cell enumeration and 

differentials. For cell enumeration, cells were gently vortexed then combined in a 1:2 dilution 

with trypan blue (Sigma-Aldrich). The suspension was slowly mixed with a pipette and 10 µl 

was loaded onto the hemocytometer. The number of live cells in the four outer squares were 

recorded and cell concentration was calculated as: total cell count in 4 squares x 2500 x 2 



www.manaraa.com

89 

 

(dilution factor). For cell differentials, cells were plated onto glass slides using a Cytospin 3 

centrifuge (Shandon Life Sciences International; Cheshire, England) set at 800 rpm for 5 

minutes. Slides were stained with Hema 3 Fixative and Solutions (Fisher Scientific; Pittsburgh, 

PA) then cover slipped. A minimum of 300 cells/slide were identified using light microscopy.  

Statistical comparisons and analysis  

Statistical analyses were performed using either JMP version 13, or SAS version 9.4 for 

Windows. Continuous variables were analyzed using treatment by day factorial analyses of 

variance (ANOVA), followed by Fishers LSD for pairwise comparisons.  For some variables, a 

natural log transformation was performed on the data to reduce heterogeneous variance and meet 

the assumptions of an ANOVA. Score variables such as hyperplasia severity were analyzed 

using nonparametric Kruskal-Wallis tests and followed by pair-wise comparisons using the 

Wilcoxon Rank Sums test.  Gross tumor counts and histopathology count data from sections 

were analyzed similarly. Tumor incidence was analyzed using a Chi-square test in SAS ‘Proc 

Freq,’ while tumor multiplicity was analyzed using Poisson regression in SAS ‘Proc Genmod.’ 

In cases where over dispersion existed, a negative binomial regression was performed. Analyses 

were performed independently on CO and MCA-treated animals, and only utilized data from 

those animals surviving to the 30-week time point. For all analyses, a p value of <0.05 was set as 

the criteria for significance. 

Results 

Welding fume characteristics 

Scanning electron microscope (SEM) images of GMAW-MS fume are presented in 

Figure 2 and show the particles forming chain-like aggregates. GMAW-MS fume ranged in size 

from nanoparticles to larger, coarse particles with most particles between 0.1 to 1 µm in size. 
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The mass median aerodynamic diameter (MMAD) was 0.31 µm. Elemental analysis indicated 

that GMAW-MS was primarily Fe and Mn (Table 1). Fe content by weight percent averaged 

83.67% and Mn was 14.33%. Approximately 2% of fume consisted of other trace metals.    

Whole lung metal deposition after GMAW-MS fume inhalation 

The lung metal deposition in A/J mice measured at time 0 after 4 hours of inhalation of 

GMAW-MS fume is shown in Table 2 and was calculated as done previously [24]. The most 

abundant metals measured were Fe (5.17 µg Fe/6.1 µg total metal deposition = 84.75%) and Mn 

(0.87 µg Mn/6.1 µg total metal deposition = 14.26%), which equates to the elemental analysis of 

the GMAW-MS fume shown in Table 1. 

Human relevance deposition calculation: 

The analysis of the metals showed a cumulative increase of 6.1 μg of total GMAW-MS 

fume deposited in the lung from a single 4 hour exposure (Table 2). The alveolar deposition in 

the mice was equated to the human by the equations below using the previous threshold limit 

value-time weighted average (TLV-TWA) of 5 mg/m3 for total welding fume. Previously, we 

estimated that 70% of the total dose reached the alveolar space (6.1 µg/d x 0.70 = 4.27 µg/d) [27, 

28]. The mice were exposed for 32 days (8 weeks at 4 days/week) for an approximate total 

alveolar deposition of 136.64 µg. 

Estimated human daily deposition using previous welding fume TLV-TWA of 5 mg/m3: 

Fume concentration x min volume x exposure duration x deposition efficiency = deposited 

human dose 

5 mg/m3 x (20 l/min)(10-3 m3/l) x (8 hours/day)(60 minutes/hour) x 0.16 = 7.7 mg deposited per 

8 hour day in humans 



www.manaraa.com

91 

 

Estimated human equivalent deposition from quantified deposition in mouse using alveolar 

surface area (SA)[29] 

(SAhuman x depositionmouse) / SAmouse = depositionhuman 

(102 m2 x 0.13664 mg) / 0.05 m2 = 278.75 mg  

278.75 mg / 7.7 mg/day = approximately 36 working days for a human working at 5 mg/m3 for 8 

hours/day. While it is understood that welding is usually not done for 8 hours/day, and the 

exposure levels are likely not to consistently reach 5 mg/m3 as a TWA, the deposition in this 

study model was representative of cumulative exposure in a human.  

Morbidity and mortality 

Initial body weights at week 0 (means ± standard error [SE]) were 19.24 ± 0.30, 19.10 ± 

0.28, 19.41 ± 0.27, and 19.18 ± 0.28 g for the CO/air, CO/GMAW-MS, MCA/air, and 

MCA/GMAW-MS groups, respectively. Body weights were not significantly changed due to 

exposure and increased steadily from week 0 to 30 with average net weight gains of 10.82, 

10.28, 10.25, and 10.91 g for the CO/air, CO/GMAW-MS, MCA/air, and MCA/GMAW-MS 

groups, respectively. Morbidity and mortality throughout the study was low (~5 %) and no 

abnormalities, such as other tumor types besides lung, were found at the terminal sacrifice at 30 

weeks. In total, 6 mice died during the course of the study and were not included in the final 

analysis of the data. The deaths were distributed equally among treatment groups. Necropsy 

determined that all 6 mice died from morbidities that included groin-associated skin lesions or a 

cause of death otherwise undetermined but not associated with the experimental protocol.  

Gross tumor incidence and multiplicity 
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The total tumor number per mouse lung for each exposure group (lines indicate average 

gross-observed tumor multiplicity) is shown in Figure 3. GMAW-MS fume significantly 

promoted lung tumors in mice at 30 weeks after initiation with MCA. Lung tumor multiplicity 

was 8.34 ± 0.59 and 21.86 ± 1.50 for MCA/air and MCA/GMAW-MS, respectively (p < 0.0001). 

There was no effect of welding fume alone on tumor multiplicity (CO/air, 0.28 ± 0.11; 

CO/GMAW-MS, 0.18 ± 0.07; p = 0.44). Average tumor incidence (% of tumor-bearing mice) 

was 21% in CO/air and 17% in CO/GMAW-MS-exposed animals. Reports in the literature 

indicate the background tumor frequency in A/J mice between 43 and 53 weeks to be 31-40% 

[30, 31]. The mice in this study were 35 or 36 weeks old upon sacrifice, indicating the observed 

tumor incidence is consistent with reported findings. As expected, tumor incidence was 100% in 

all MCA-initiated groups (n = 29 for MCA/air and n = 28 MCA/GMAW-MS groups), which 

confirmed the successful administration as well as its carcinogenic effectiveness in A/J mice. 

Total and average tumor number per treatment group across each of the individual lung lobes are 

reported in Table 3. MCA/GMAW-MS-exposed mice had significantly greater lung tumor 

multiplicity in every lung region compared to MCA/air (p < 0.05).  

 Gross lung morphology from a GMAW-MS-exposed mouse initiated with MCA is 

shown in Figure 4. Welding fume deposition was visible in all exposed mouse lungs and 

appeared reddish to black-brown in color. Tumors appeared white in color and opaque on initial 

gross exam and became more well-defined after fixation which aided enumeration. At 30 weeks, 

tumors were between ~0.5 mm and ~4 mm in diameter, with most tumors ~1 mm. Mean tumor 

sizes were 1.14 ± 0.12, 0.98 ± 0.20, 1.14 ± 0.02, and 1.19 ± 0.02 mm for CO/air, CO/GMAW-

MS, MCA/air, and MCA/GMAW-MS, respectively.  

Histopathological evaluation of lung lesions, inflammation, and welding fume presence 
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Severity scores for abnormal morphological findings and numbers of lung lesions 

observed in lung sections from A/J mice are shown in Table 4. Histopathology analysis 

confirmed the gross findings, with significantly greater lung tumor multiplicity in the 

MCA/GMAW-MS animals (9.86 ± 0.88) compared to MCA/air (3.34 ± 0.34), CO/GMAW-MS 

(0.14 ± 0.07), or CO/air animals (0.27 ± 0.12). In addition, two bronchioloalveolar 

adenocarcinomas were present in the MCA/GMAW-MS-exposed mice. None were observed in 

other treatment groups. Bronchiolo-alveolar adenomas and adenocarcinomas can arise from foci 

of alveolar hyperplasia [25]. Some of the adenomas in this study were solid discrete nodular 

masses, typical of adenoma, but the majority of the lesions diagnosed as adenomas arose within 

hyperplasias. Hyperplasias generally had irregular borders and consisted of alveoli lined by 

plump, round to ovoid to cuboidal epithelial cells that formed a single layer and, occasionally, 

small foci of hypercellularity, but still maintained the normal alveolar architecture (Figure 5A 

and 5B). Lesions were distinguished by focal nodular areas characterized by abnormal growth 

structure characteristic of adenoma, such as solid hypercellular areas and hypercellular papillary 

structures sometimes containing slightly atypical cells, that were clearly different from the 

adjacent areas of hyperplasia, resulting in disruption of the normal alveolar architecture (Figure 

5C and 5D). This represented transition from hyperplasia to neoplasia and these lesions were 

diagnosed simply as bronchioloalveolar adenoma.  

Foreign material, (i.e., GMAW-MS fume), was observed in the right and left lobes of 

nearly all MCA/GMAW-MS and CO/GMAW-MS-exposed lungs. The foreign material ranged 

in appearance from multiple, scattered small clusters of minute discrete focal aggregates of 

histiocytes to a few widely scattered individual histiocytes containing black intracytoplasmic 

granules. Foreign material was graded based upon the amount of accumulated material present 
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and was considered minimal in all cases. Unremarkable inflammation was observed in any of the 

treatment groups. No significant monocytic or lymphoid infiltrate was observed in any mouse 

lungs, indicating a lack of inflammation from GMAW-MS inhalation exposure.  

BAL findings 1 day, 7 days, 28 days, and 84 days post-exposure to GMAW-MS fume 

At 1 day post-exposure, cytotoxicity as measured by LDH levels was not significantly 

increased in GMAW-MS-exposed compared to air-exposed mice (111.10 ± 7.08 and 101.90 ± 

4.65 U/L, respectively). The same result was found at 7, 28, and 84 days post-exposure (Table 

5). In both the GMAW-MS fume and air-exposed groups, cell populations were > 99% AM. 

Similarly, slides from control animals typically contained >99% AM. A significant increase in 

macrophage cell number was seen in GMAW-MS-exposed mice at 28 and 84 days post-exposure 

(p < 0.05). No significant neutrophils, eosinophils, or lymphocytes were observed at any time 

point post-exposure (data not shown).  

Discussion 

This study demonstrated that GMAW-MS fume is a lung tumor promoter in A/J mice, 

despite a lack of significant chronic lung inflammation or the presence of known carcinogenic 

metals in the fume. Gross and histopathological examination revealed significantly increased 

lung tumor multiplicity in MCA/GMAW-MS-exposed mice compared to MCA/air controls. This 

tumor promotion effect was achieved at a lower fume deposition than our previous GMAW-SS 

oropharyngeal aspiration or inhalation studies [9, 10]. The results of this study support 

epidemiological findings that MS welders are still at increased risk of lung cancer despite 

absence of known carcinogens in the MS fume [4, 5]. 

 Whole lung metal analysis revealed 6.1 μg of GMAW-MS fume was deposited after a 

single 4 hour exposure, which equates to an approximate total deposition of 136.64 µg in the 

alveolar region of the lung throughout the course of the exposure. In comparison, a previous 
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GMAW-SS inhalation study by Falcone et al. found a lung metal deposition of ~10.1 µg, or an 

approximate total deposition of 254.4 µg in the alveolar region [24]. This GMAW-MS 

deposition is approximately 46% lower than the GMAW- SS study, yet the tumor multiplicity 

after exposure to GMAW-MS was similar (21.86 ± 1.50 compared to 16.11 ± 1.18, respectively).  

GMAW-SS has been shown to induce a mild, chronic inflammation in the lung [11]. 

Histopathological analysis of mouse lung sections after GMAW-SS fume exposure revealed 

significantly increased perivascular and peribronchiolar mononuclear cell infiltrates [11]. In 

contrast, no significant lung inflammation or cytotoxicity was found in this study after a short-

term GMAW-MS fume exposure. Histopathological analysis of lung sections showed no 

evidence of chronic inflammation. These findings agree with earlier occupational and rat MS 

welding fume studies [12, 32]. Despite the lack of overt inflammation following this exposure, 

substantial evidence indicates that tumor promotion and inflammation are often connected, and 

inflammation is considered an enabling hallmark of carginogenesis [33-35]. Many carcinogens 

are now thought to cause both genetic and/or epigenetic changes that may lead to cancer.  It is 

possible there may be an epigenetic effect occurring with welding fume exposures [36]. A 

number of metals such as nickel, cadmium, and arsenic, as well as exposure to substances like 

alcohol and cigarette smoke, are known to cause epigenetic changes such as DNA methylation 

and histone modification which can lead to the development of cancer [36, 37]. Totsuka et al. 

observed DNA damage and increased formation of DNA adducts in mice after exposure to iron 

oxide [38]. Epigenetic changes are now considered an important contributor to carcinogenesis 

and this may be an important area to investigate with welding fumes in the future. Indeed, 

stainless steel welding fume exposure has been shown to cause epigenetic changes (e.g., 

increased telomere length) in circulating peripheral blood monocytes of rats [39]. Similar studies 



www.manaraa.com

96 

 

that examine these epigenetic effects in lung epithelial cells isolated from A/J mice after 

inhalation exposure to GMAW-MS fume are needed.  

Although there was a lack of overt inflammation following in vivo exposure to GMAW-

MS fume in this study, worker studies have indicated that welders are at increased risk of lobar 

pneumonia from Streptococcus pneumoniae infection as well as other lung infections [40-43]. A 

cross-sectional study of shipyard workers in the Middle East found that those exposed to welding 

fumes had a higher prevalence of respiratory symptoms and were more likely to report to 

healthcare professionals concerning respiratory infections [44]. Epidemiological studies have 

found that welders are at increased risk of developing and dying from pneumococcal and lobar 

pneumonia, suggesting a need for pneumococcal vaccination among welders [45]. According to 

prevailing hypotheses, the reasons for increased risk of infection in welders include the ability of 

Fe to act as a micronutrient for bacteria, inhibition of the immune system, and enhanced binding 

of Streptococcus pneumoniae to lung epithelial cells [41]. Recent research most strongly 

supports enhanced bacterial binding to lung epithelial cells as the primary mechanism for the 

increased Streptococcal infection risk [40, 42, 46]. Research concerning inhibition of the 

immune system is less consistent. A study investigating inflammatory markers in welders saw no 

inflammatory response nor a change in inflammatory markers that would be expected with an 

inhibited immune response [47]. Antonini et al. 2014 observed that pre-treatment of RAW 264.7 

macrophages with GMA-MS had no effect on phagocytic function at 3 and 6 hours [48]. 

However, a later study by Antonini et al. found that inhalation of GMAW-MS fume suppressed 

lung defense responses following bacterial challenge in rats [12]. If GMAW-MS suppressed 

mouse lung defenses in this study, it is possible this represents a potential mechanism by which 

tumor promotion is occurring.  
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 Even though GMAW-MS fume is composed of both Mn and Fe, the majority of studies 

in the literature suggest Mn as having primarily neurotoxic effects. These can potentially include 

Manganism and a Parkinson disease-like disorder in welders [2, 49, 50]. Studies have also 

indicated impairment in learning and memory in rats exposed to Mn [51, 52]. In contrast, it is 

widely accepted that Fe overload increases cancer risk, with evidence from Fe over-load diseases 

like hemochromatosis, mylodysplastic syndromes, and endometriosis in which Fe excess can 

contribute to the development of cancer [15, 18, 53, 54]. Fe overload has also been shown to be a 

contributory cause of pathogenesis in asbestos-induced mesothelioma [54]. Although Fe is a 

crucial micronutrient for the body, too much Fe can increase cancer risk via the production of 

reactive oxygen species. The Fe in welding fume is present as various forms of iron oxides, 

including Fe2O3. Once inhaled, this Fe3+ could be reduced and then oxidized by the Fenton 

reaction to create hydroxyl radical. This radical can damage lipids and DNA leading to mutations 

that can cause cancer. Hydroxyl radical has also been shown to accelerate migratory and invasive 

capabilities of lung cancer cells and modulate signals that regulate cell transformation, increase 

apoptosis, and alter gene expression, although it is unclear if this is occurring in this study given 

the lack of overt inflammation [18, 55]. Fe homeostasis has also been shown to be associated 

with airway obstruction, with elevated serum ferritin corresponding to lower FEV1/FVC ratios 

[56]. As Fe accumulates, it may progressively damage the airway and lungs, leading to 

obstructive disease as well as lead to accompanying diseases such as cancer and infections. In 

this study, we observed increased macrophages in the GMAW-MS-exposed mice at 28 and 84 

days post-exposure which likely infiltrated into the lungs to clear the welding fume particles. 

Epidemiological evidence from numerous worker studies involving industrial exposures to iron 

oxides, such as iron ore mining, iron and steel founding, and welding, reveal increased cancer 
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risks in these populations [19, 57]. However, the results are conflicting, with some reports 

suggesting no increased cancer risk [21]. Iron oxide exposures are difficult to study in isolation, 

however, as many of these occupations also involve exposures to other cancer-causing materials 

such as radon, cigarette smoke, or known carcinogenic metals. Furthermore, in vivo inhalation 

studies of iron oxide exposures are scarce [58]. Because of limited evidence from “pure” human 

iron oxide exposures, iron oxide is currently not classified as carcinogenic to humans according 

to the IARC [57].  

 In conclusion, this study is the first to demonstrate that GMAW-MS fume, despite 

containing no metals currently classified as carcinogens, promotes lung tumors in A/J mice. 

Future studies in our laboratory will investigate the toxicity and tumorigenic potential of the 

individual metal components of GMAW-SS and GMAW-MS fumes. Results of these studies 

may help to identify the metal components that are most toxic and tumorigenic. Ultimately, a 

more complete understanding of the toxicity and tumorigenic potential of the welding fume 

components can lead to a safer work environment for welders. 
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Figure 1. Timelines of experimental protocols. Panel A – Experimental protocol for whole 

lung metal analysis. Mice were exposed by whole-body inhalation to filtered air (n = 10) or 

GMAW-MS fume (n = 10) for 4 hours/day for 10 days. Inductively coupled argon plasma, 

atomic emission spectroscopy was used to analyze metal content of lungs. Panel B - 

Experimental protocol for two-stage (initiation-promotion) bioassay. Mice received MCA (n = 

60) or corn oil (n = 60) injections and beginning 1 week later were exposed to GMAW-MS or air 

inhalation 4 hours/day x 4 day/week x 8 weeks before terminal sacrifice at 30 weeks. Panel C -  

Experimental protocol for whole lung bronchoalveolar lavage (BAL). Sixty-four mice were 

exposed to GMAW-MS or air for 4 hours/day for 10 days. Whole lung BAL was used to assess 

lung injury and inflammation at 1 day, 7 days, 28 days, and 84 days post-exposure (n = 8 per 

treatment group per time point).  

Figure 2. SEM images of GMAW-MS fume. Particles form small clustered aggregates ranging 

in size from less than 0.01 µm to over 1 µm, with a mass median aerodynamic diameter of 0.31 

µm.[12] Primary particles were mainly in the nanometer size range and primarily composed of 

iron (83.67%) and manganese (14.33%).  

Figure 3. Average tumor number per mouse lung (tumor multiplicity) upon gross 

examination in A/J mice following initiation-promotion study at 30 week sacrifice.  

MCA/GMAW-MS significantly increased lung tumor number compared to air controls (21.86 ± 

1.50 vs 8.34 ± 0.59, respectively). As expected, mice not initiated with MCA had low tumor 

number. Horizontal bars represent mean tumor numbers per group. Circles = CO/Air, squares = 

MCA/air, upward triangles = MCA/air, downward triangles = MCA/GMAW-MS. *p <0.0001 – 

compared to CO/air; **p <0.0001 – compared to MCA/air 



www.manaraa.com

107 

 

Figure 4.  Gross images of A/J mouse lung promoted by GMAW-MS 30 weeks post-

initiation with MCA. Panel A – Lung tumor morphology before fixation. Panel B – Lung 

tumors 24 hours after fixation. Fixation allows for more accurate enumeration of tumors. Tumors 

(arrows) were on average ~1 mm in diameter and opaque in color.    

Figure 5. Photomicrographs of lung tissue from MCA/GMAW-MS exposed mice.  Panel A- 

moderate bronchioloalveolar hyperplasia, 4x magnification. Panel B – moderate 

bronchioloalveolar hyperplasia,10x magnification. Panel C – bronchioloalveolar adenoma as a 

solid discrete mass, 10x magnification. Panel D - bronchioloalveolar adenoma, 20x 

magnification.  

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

108 

 

Tables 

Table 1. Metal composition of GMAW-MS fume 

 

Metals Analyzed Weight % of Metals 

Fe 83.67 ± 0.47 

Mn 14.33 ± 0.37 

Cu 0.13 ± 0.03 

 

GMAW-MS fume was analyzed for aluminum (Al), chromium (Cr), copper (Cu), iron (Fe), 

manganese (Mn), nickel (Ni), silicon (Si), titanium (Ti), vanadium (V), and zinc (Zn) by 

Inductively Coupled Plasma-Atomic Emission Spectroscopy. Samples were prepared according 

to the NIOSH method 7303 modified for microwave digestion. Trace amounts of Al, Cr, Ni, Si, 

Ti, and V were found. Note: Values are mean ± standard error of the mean (n = 3 welding fume 

collection periods of 30 minutes). Weight % is relative to all metals analyzed. GMAW-MS – gas 

metal arc welding-mild steel. 
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Table 2. Lung metal deposition in A/J mice after air or GMAW-MS fume inhalation for 4 hours 

at a concentration of 36.4 mg/m3  

Exposure Fe (µg/lung) Mn (µg/lung) Cu (µg/lung) 

Air 9.45 ± 0.29 0.01 ± 0.00 0.23 ± 0.01 

GMAW-MS 14.62 ± 0.45 0.88 ± 0.05 0.29 ± 0.01 

  

Freeze-dried whole lung tissue was analyzed for aluminum (Al), chromium (Cr), copper (Cu), 

iron (Fe), manganese (Mn), nickel (Ni), titanium (Ti), and zinc (Zn) by Inductively Coupled 

Plasma-Atomic Emission Spectroscopy. Samples were prepared according to the NIOSH method 

7300 for bulk tissue samples. Levels of Al, Cr, Ni, Ti, and Zn were not significantly increased in 

exposed animals or not detected. Note: Values are mean ± standard error of the mean (n=10 air; 

n=10 GMAW-MS); GMAW-MS – gas metal arc welding-mild steel.    
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Table 3. Total and average (in parenthesis) tumor number in A/J mice across each of the 

individual lung lobes following GMAW-MS or air exposure 30 weeks post-initiation with MCA 

or corn oil. 

 

CO – corn oil, GMAW-MS – gas metal arc welding – mild steel, MCA – 3-methylchloanthrene  

*p < 0.0001 - compared to MCA/air, ** p < 0.0001 - compared to CO/air, ^ p < 0.05 - compared 

to MCA/air 

 

 

 

 

 

 

 

 

 

 n Left Apical Cardiac Diaphragmatic Azygos 

CO/air 29 4 (0.14 ± 0.07) 2 (0.07 ± 0.05) 0 1 (0.03 ± 0.03) 1 (0.03 ± 0.03) 

CO/GMA-MS 28 3 (0.12 ± 0.06) 0 0 1 (0.04 ± 0.04) 1 (0.04 ± 0.04) 

MCA/air 29 81 (2.79 ± 0.32)** 28 (0.97 ± 0.16)** 37 (1.28 ± 0.24)** 67 (2.31 ± 0.29)** 29 (1.00 ± 0.16)** 

MCA/GMA-

MS 
28 226 (8.07 ± 0.74)* 77 (2.75 ± 0.31)* 77 (2.75 ± 0.36)* 187 (6.68 ± 0.48)* 45 (1.61 ± 0.28)^ 
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Table 4. Lung histopathological findings including number of microscopically observed lung 

lesions at 30 weeks post-initiation with MCA or CO in A/J mice exposed to GMAW-MS fume or 

filtered air by inhalation  

 

 

 

 

GMAW-MS – gas metal arc welding – mild steel, MCA – 3 – methylcholanthrene, CO – corn oil 

^Severity scores are the averages of the left and right lung lobes and are presented as mean ±  

standard error. Foreign material refers to presence of presumptive GMAW-MS fume (brown-

black pigment) in the lungs. Severity was scored as 1 = minimal, 2 = mild, 3 = moderate, 4 = 

marked. 

#Hyperplasias, adenomas, and adenocarcinomas are presented as mean ± standard error with total 

lesion number in parenthesis.  

-- indicates no findings 

* p < 0.0001 compared to MCA/air, **p < 0.0001 compared to CO/air, ǂp < 0.02 compared to 

CO/air 

 

 

 

 n Foreign 

Material^ 

Hyperplasia 

Severity^ 

Hyperplasia# Adenoma# Adenocarcinoma# Total Lesions# 

CO/air 15 -- 0.1 ± 0.05 0.2 ± 0.11 (3) 0.07 ± 0.07 (1) -- 0.27 ± 0.12 (4) 

CO/GMAW-MS 28 0.91 ± 0.05** 0.02 ± 0.02 0.07 ± 0.05 (2) 0.07 ± 0.05 (2) -- 0.14 ± 0.07 (4) 

MCA/air 29 0.02 ± 0.02 1.79 ± 0.18**  2.93 ± 0.34 (85)** 0.41 ±  0.13 (12)ǂ -- 3.34 ± 0.34 (97)** 

MCA/GMAW-MS 28 0.96 ± 0.02* 2.55 ± 0.16* 7.11 ± 0.64 (199)* 2.67 ± 0.36 (75)* 0.07 ± 0.05 (2) 9.86 ± 0.86 (276)* 
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Table 5. Bronchoalveolar lavage parameters after exposure to air or GMAW-MS fume at a 

concentration 36.28 mg/m3 for 4 hours/day for 10 days 

 

 

 

 

 

 

Total bronchoalveolar (BAL) lavage differential based on cell count of >300 cells.  

Lymphocytes, neutrophils, and eosinophils were absent from BAL and excluded from the table. 

Data are means + SE.  – indicates no findings. Abbreviations: GMAW-SS - gas metal arc 

welding - mild steel. LDH – lactate dehydrogenase. *p <0.05.  

 

 

 

 

 

Exposure 
Time Point 

(days) 
n LDH (U/L) 

Macrophages 

(BAL cell #/ml) 

Air 1 8 101.90 ± 4.65 414286 ± 23234 

GMAW-MS 

 

Air 

GMAW-MS 

 

Air 

GMAW-MS 

 

Air 

GMAW-MS 

 

 

7 

 

 

28 

 

 

84 

 

 

8 

 

8 

8 

 

8 

8 

 

8 

8 

111.10 ± 7.08 

 

91.80 ± 4.06 

100.50 ± 2.86 

 

84.30 ± 4.42 

85.10 ± 6.00 

 

103.70 ± 6.57 

84.50 ± 2.41 

442500 ± 40820 

 

452500 ± 28800 

411021 ± 33726 

 

282500 ± 54052 

491250 ± 67445* 

 

327143 ± 47193 

520000 ± 56901* 
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Figures. 

Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Figure 5.  
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Abstract 

In 2017, the International Agency for Research on Cancer classified welding fumes as 

“carcinogenic to humans” (Group 1). Only some of the metals found in welding fume are 

considered pneumotoxic or carcinogenic, however. The objectives of this study were (1) to 

compare the pulmonary toxicity of chromium (as chromium [III] oxide or Cr2O3 and calcium 

chromate [Cr VI] as CaCrO4), nickel [II] oxide (NiO), iron [III] oxide (Fe2O3), and gas metal arc 

welding-stainless steel (GMAW-SS) fume; and (2) determine if these metal oxides can promote 

lung tumors in A/J mice, a lung tumor susceptible strain. Male A/J mice (4–5 weeks) were 

exposed by oropharyngeal aspiration to a suspension of GMAW-SS fume at a cumulative dose 

(1.7 mg) that was previously found to promote lung tumors or a low or high dose of metal oxides 

based on the respective weight percent of each metal in the fume:  Cr2O3/CaCrO4 (366/5 µg and 

731/11 µg), NiO (141 and 281 µg), or Fe2O3 (1 and 2 mg). Shams were exposed to 50 µl PBS 

(vehicle). Bronchoalveolar lavage, histopathology, and lung/liver qPCR were done at 1, 7, 28, 

and 84 days post-aspiration. In a separate study of two-stage lung carcinogenesis, mice received 

corn oil or 3-methylcholanthrene (10 µg/g; IP) and then were exposed by oropharyngeal 

aspiration to metal oxides or PBS (1 x/week for 5 weeks; cumulative dose for each metal equaled 

high dose from toxicity study). Lung tumor incidence and multiplicity were evaluated at 30 

weeks post-initiation. GMAW-SS-induced lung cytotoxicity and inflammatory cell influx was 

significantly greater than any individual metals through 84 days post-exposure. The metals, 

therefore, may have a synergistic effect on lung toxicity and inflammation. Among the metal 

oxides, Fe2O3 was the most pneumotoxic and the only metal that significantly promoted lung 

tumors in mice.  
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Introduction 

Nearly half of all U.S. products require welding for their production and there are 

millions of welders worldwide[1]. Welding, the strongest method of joining metals, is therefore a 

common industrial practice, with gas metal arc welding (GMAW) being among the most popular 

modalities. In GMAW, an electric arc is established between the work piece and a consumable 

electrode, often mild or stainless steel (MS or SS). High temperatures create a molten pool into 

which the electrode is fed and the work pieces fuse as the weld cools. Arc welding processes can 

generate a significant amount of welding fume- vaporized metals that react with air to form 

metal oxides particles that are respirable. The fume may contain particles from the base metal, 

wire/electrode, and coatings on the base metal or electrode.  

Welding fumes have known adverse human health effects [2-4]. In 2017, the 

International Agency for Research on Cancer (IARC) classified welding fumes as a Group 1 

(carcinogenic to humans) [1]. This classification was based on sufficient epidemiological 

evidence for an increased risk of lung cancer in welders even after adjustment for smoking 

and/or asbestos that potentially confound these studies. Positive associations were found for 

welding on SS which generate fumes that contains carcinogenic metals [i.e., chromium (Cr), 

nickel (Ni)] and MS welding where the fume is primarily oxides of iron (Fe) and manganese 

(Mn) [5-8]. Animal evidence for the carcinogenicity of welding fumes is limited, however. In a 

two-stage (initiation-promotion) model of lung carcinogenesis, inhalation and oropharyngeal 

aspiration of GMAW-SS fume promoted lung tumors in mice. Previous experimental evidence in 

mice showed that GMAW-SS persists in the lungs and causes a chronic, mild inflammatory 

response compared to GMAW-MS or manual metal arc (MMA)-SS fumes [9]. It is unknown 

which metal components of the fume are responsible for its toxic and tumorigenic effects. 
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Welding fume currently has no occupational exposure limit as the former Threshold 

Limit Value® of 5 mg/m3 as an 8-hour time-weighted average was retracted [10]. In the 

workplace, more emphasis is placed on regulating the exposure to the most toxic metals 

contained in the fume (i.e., Cr or Ni). The first aim of this study was to compare the pulmonary 

toxicity of metal oxides found in GMAW-SS fume. The second aim was to investigate the 

potential of those metals to promote lung tumors in A/J mice to gain an understanding of the 

metals that drive the carcinogenicity of SS fume. Minimizing the hazardous components of the 

welding fume could offer a better approach for maintaining welder health and safety as sustained 

inflammation and oxidative stress along with persistence of toxic components are likely key to 

lung tumorigenesis.  

Methods 

Animals 

Male A/J mice, 4 to 5 weeks of age, were housed in an AAALAC International, specific 

pathogen-free, environmentally-controlled facility in groups of 2 as previously described [11]. 

All procedures were performed using protocols approved by the National Institute for 

Occupational Safety and Health (NIOSH) Institutional Animal Care and Use Committee.  

GMAW-SS fume generation and metal oxide characterization 

The welding fume used in this study was generated by the NIOSH robotic welder [12]. 

The individual metal oxides utilized were Cr2O3 (product number 393703; 151.99 g/mol), 

CaCrO4 (product number CDS001277; 156.07 g/mol), NiO (product number 203882; 74.69 

g/mol), and Fe2O3 (product number 310050; 159.69 g/mol) and were purchased from Sigma-

Aldrich (St. Louis, MO). Specific surface area (m2/g) of the powders was determined using 

nitrogen gas adsorption (ASAP 2020, Micromeritics Instrument Corporation, Norcross, GA). 
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Cr2O3, NiO, GMAW-SS, or Fe2O3 powder was added to separate sample tubes and degassed 

under light vacuum at 300 °C for 2 hours then allowed to cool. CaCrO4 was degassed using the 

same procedure, but was held at 80 °C for 6 hrs. A value of 1.62 x 10-19 m2 was used for the 

molecular cross-sectional area of N2 at 77 K and surface area was calculated from at least five 

adsorption points in the range p/p0 = 0.01 to 0.3. Measurements were repeated 4 times for each 

sample except GMAW-SS, which was repeated twice. Hydrodynamic diameter and zeta 

potential of each study material were determined using dynamic light scattering (DLS) and laser 

Doppler electrophoresis, respectively (Zetasizer ZS90, Malvern Instruments, Worcestershire, 

UK) following dispersion in the PBS dosing medium. The pH of each sample was measured 

before each run using a SevenMulti calibrated electrode (Mettler-Toledo, LLC, Columbus, OH). 

All measurements were made at 25 °C. Parameters of the dispersant were as follows: refractive 

index = 1.334, viscosity = 0.9110 cP, dielectric constant = 80.2, and Henry function 

approximation of 1.5. Material-specific refractive index and absorbance values were used for 

each metal oxide. Certain metal oxides were too polydisperse for size measurement via DLS and 

were instead analyzed using nanoparticle tracking analysis (NTA) (NanoSight NS300, Malvern 

Instruments, Worcestershire, UK) to characterize mean hydrodynamic particle size (nm). For 

NTA analysis, the samples were injected through a Low Volume Flow Cell (LVFC) and 

measured at room temperature. Camera levels in the NTA instrument varied with each sample to 

insure accurate particle characterization. Each sample was captured 5 times for 60 seconds.    

GMAW-SS fume and metal oxide preparation  

Previous metal analyses of GMAW-SS have shown that the metal content of the fume is 

57% Fe, 20.2% Cr, 13.8% Mn, 8.8% Ni, and 0.2% Cu [12, 13]. These metals are present in the 

fume as metal oxides which were volatilized from the electrode/rod during welding and then 
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reacted with air to form particles. However, the Cr component of the fume consists of both Cr3+ 

and Cr6+, with approximately 0.29% as Cr6+ [13].  Therefore, for this study, mice were exposed 

to a low or high dose of Ni as NiO, Fe as Fe2O3, and Cr as a mixture of Cr2O3/ CaCrO4. Mn and 

Cu were not investigated as they are not known to be carcinogenic to humans or cause lung 

disease. To calculate the doses in this study, the following formula was used: 

.𝑀𝑎𝑠𝑠 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑜𝑥𝑖𝑑𝑒𝑖  (𝑔) =  
𝛴𝑚𝑎𝑠𝑠 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙𝑠 (𝑔)

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑓𝑢𝑚𝑒 (𝑔)
 ×  (

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑜𝑥𝑖𝑑𝑒𝑖 (𝑔)

𝛴𝑚𝑎𝑠𝑠 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙𝑠 (𝑔)
 × 100) ×  𝑓𝑢𝑚𝑒 𝑑𝑜𝑠𝑒 (𝑔) × 

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑜𝑥𝑖𝑑𝑒𝑖 (
𝑔

𝑚𝑜𝑙
)

𝐴𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙𝑖 (
𝑔

𝑚𝑜𝑙
)

 

The first value in this equation represents that the metal content is 74% of the fume mass, 

with the remaining fume mass contributed by gases including O2.  The second value in the 

equation represents the percentage of each metal (listed above) that contributed to that 74% of 

the fume mass. The third value in the equation uses the cumulative low dose (1.7 mg) or high 

dose (3.4 mg) of GMAW-SS which resulted in lung tumorigenesis in our previous study [13]. 

Lastly, the fourth value in the equation represents the atomic weight ratio of the metal oxide to 

metal. For example, mass (g) of NiO (low dose) = 0.74*0.088*1.7*(74.7/58.7) = 141 µg.  

The respective low and high doses of each metal oxide are shown in Figure 1A and 

scanning electron microscopy images are presented in Figure 1B, C, and D. The fume and each 

component metal were suspended in USP-grade calcium and magnesium-free phosphate buffered 

saline (PBS; vehicle) in a sterile conical tube. Fe2O3 was vortexed then sonicated at 40 amps for 

15 seconds using a GE 130PB ultrasonic processor (Cole Parmer). GMAW-SS and NiO were 

vortexed then sonicated twice at 40 amps for 15 seconds with a 1 minute rest period in between. 

Cr2O3/ CaCrO4 was not sonicated.   

Mouse oropharyngeal aspiration exposure  

A/J mice were exposed to the metal oxides or the GMAW-SS fume by oropharyngeal 

aspiration as previously described [9, 14]. In brief, each mouse was placed in a glass jar with 
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gauze containing a histology cassette moistened with isoflurane (Abbott Laboratories, North 

Chicago, IL). Once slow breathing was observed, the mouse was suspended by its front incisors 

on a slanted board in a supine position. Forceps were used to extend the tongue and 50 µl of 

metal oxide suspension was placed by pipette at the back of the throat. Shams received an equal 

volume of vehicle (PBS). The suspension was aspirated into the lungs by normal breathing and 

the tongue was released after three deep breaths were observed. All solutions were thoroughly 

vortexed immediately prior to dosing. This technique loses little solution to the gastrointestinal 

tract when performed properly. The mouse returned to normal activity in its cage within 10 to 20 

seconds.  

Experimental Protocol 1: biochemical measurements of lung toxicity, histopathology, and 

gene expression 

In two parallel studies, 256 male A/J mice were organized into 4 blocks of 64 mice and 

then separated into 8 treatment groups within each block (n = 8/group) consisting of a single low 

or high bolus dose of Cr2O3 + CaCrO4 mixture, NiO, Fe2O3, GMAW-SS fume (low dose only) or 

PBS (sham control). Doses are shown in Figure 1A and a timeline of the exposure and the block 

design are shown in Figure 2. Animals were euthanized at 1, 7, 28, and 84 days post-

oropharyngeal aspiration exposure. Mice were weighed after an acclimation period, throughout 

the dosing, and at the 1, 7, 28, and 84 days sacrifices.  Mice were anesthetized with Fatal Plus 

([100-300 mg/kg IP; 390 mg/ml pentobarbital sodium] (Henry Schein, Dublin, Ohio) then 

weighed. Once unresponsive to a toe pinch, the abdomen was the mouse was exsanguinated.   

Whole lung bronchoalveolar lavage (BAL) toxicity profile  

A blunted cannula was placed in the trachea through a small incision and the thorax was 

massaged as 0.6 mL of cold PBS was instilled into the lungs. After 10 seconds, the BAL fluid 
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was withdrawn and placed in a 15 mL conical tube. This consisted of the first lavage fraction. 

This process was then repeated 3 times using 1 mL of PBS per instillate and this second fraction 

was collected in a separate 15 mL conical tube. The BAL fluid was kept on ice until all the mice 

were sacrificed and then the samples were centrifuged (500 x g, 10 minutes, 4⁰ C).  

Bronchoalveolar lavage fluid cytokine analysis 

Cytokine concentrations from the first fraction of BAL supernatant at 1 day and 28 days 

post-exposure were quantified simultaneously by using a Discovery Assay® called the Mouse 

Cytokine Array / Chemokine Array 32-Plex (Eve Technologies Corp, Calgary, AB, Canada). 

The multiplex assay was performed at Eve Technologies by using the Bio-Plex™ 200 system 

(Bio-Rad Laboratories, Inc., Hercules, CA, USA), and a Milliplex Mouse Cytokine / Chemokine 

kit (Millipore, St. Charles, MO, USA) according to their protocol. The 32-plex consisted of 

Eotaxin, granulocyte-colony stimulating factor (G-CSF), granulocyte monocyte- colony 

stimulating factor (GM-CSF), interferon gamma (IFNγ), interleukin-1α  (IL-1α), IL-1β, IL-2, IL-

3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17, interferon-

gamma-inducible protein 10 (IP-10), keratinocyte chemoattractant (KC), leukemia inhibitory 

factor (LIF), C-X-C motif chemokine 5 (CXCL5), monocyte chemotactic protein 1 (MCP-10), 

macrophage- colony stimulating factor (M-CSF), monokine induced by gamma interferon 

(MIG), marcrophage inflammatory protein 1α (MIP-1α), MIP-1β, MIP-2, regulated on 

activation, normal T-cell expressed and secreted (RANTES), tumor necrosis factor α (TNFα), 

and vascular endothelial growth factor (VEGF). Standard curves with a range of 0 to >25,000 

pg/mL were determined for each cytokine. The lowest concentration in the group was used for 

any value that was out of range. The assay sensitivities of these markers range from 0.1 – 33.3 
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pg/mL. Individual analyte values and other assay details are available on Eve Technologies' 

website or in the Milliplex protocol. 

Lactate dehydrogenase (LDH) activity and BAL cell profile.  

The acellular supernatant of the first lavage fraction was used to measure LDH activity, 

indicative of lung cytotoxicity. LDH activity was analyzed using a COBAS MIRA Plus auto-

analyzer (Roche Diagnostic Systems, Montclair, NJ) which measured the oxidation of lactate to 

pyruvate coupled with the formation of NADH at 340 nm.  

For analysis of the BAL cells, the supernatant from the second lavage fraction was 

discarded and the cell pellets of both fractions were combined. The final cell pellet suspended in 

800 µL of PBS was used for cell counts and differential staining. Total cell numbers were 

determined using a hemocytometer. For cell differentials, cells were plated onto glass slides 

using a Cytospin 3 centrifuge (Shandon Life Sciences International, Cheshire, England) set at 

800 rpm for 5 minutes. Slides were stained with Hema 3 Fixative and Solutions (Fisher 

Scientific, Pittsburgh, Pa) then coverslipped. A minimum of 300 cells/slide consisting of alveolar 

macrophages, lymphocytes, neutrophils, or eosinophils were identified using light microscopy. 

Slides from shams typically contained >99% alveolar macrophages.  

Alveolar macrophage functional assay 

To study the impact of the metal oxides on innate immune function, alveolar 

macrophages from the suspended cell pellet at 1, 7, and 28 days post-exposure to sham, SS, or 

the metal oxides were challenged with Escherichia coli (E.coli ) GFP for 2 hours at 1:25 MOI 

(multiplicity of infection). The E.coli uptake by alveolar macrophages was quantified by flow 

cytometry.  

Quantitative real-time polymerase chain reaction (qPCR) and lung histopathology.  
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The left lung lobe was ligated and flash frozen and then stored at -80 C for RNA isolation 

while the right lung lobes were fixed in 10% neutral buffered formalin for histopathology. Liver 

was cut (~ 30 mg piece) and flash frozen before storage. RNA was isolated from the lung and 

liver tissue using RNeasy Mini Kits (Qiagen, Hilden, Germany) and 1 µg was reverse transcribed 

using random hexamers, dNTP mix and SuperScript™ III Reverse Transcriptase (Invitrogen, 

ThermoFisher Scientific, Waltham, MA).  Diluted cDNA (1:10) was combined with Taqman® 

Gene Expression Mastermix (ThermoFisher Scientific, Waltham, Ma) and one of the following 

genes of interest for the lung: nuclear receptor subfamily 1, group D, member 1 (Nr1d1; 

Mm00520708_m1), nuclear receptor subfamily 1, group D, member 2 (Nr1d2; 

Mm01310356_g1), heme oxygenase 1 (Hmox1; Mm00516005_m1), transferrin receptor (Tfcr; 

Mm00441941_m1), solute carrier family 40 (iron-regulated transporter), member 1 (Slc40a1; 

Mm01254822_m1), cyclin dependent kinase 4 (CDK4; Hs00364847_m1), cyclin-dependent 

kinase inhibitor 1A (p21; Mm04205640_g1), and SRY (sex determining region Y)-box 9 (Sox9; 

Mm00448840_m1).  For the liver, the following genes of interest were analyzed: metallothionein 

1 (Mt1; Mm00496660_g1), metallothionein 2 (Mt2; Mm00809556_s1), haptoglobin (Hp; 

Mm00516884_m1), and serum amyloid A1 (Saa1; Mm00656927_g1). Hypoxanthine 

phosphoribosyltransferase (HPRT) was used as the reference gene (Mm03024075_m1, 

ThermoFisher Scientific, Waltham, MA).  Amplification parameters included 10 minutes at 

95˚C, 1 second at 95˚C and 20 seconds at 60˚C. Relative mRNA levels were calculated using the 

comparative threshold method (2- ΔΔCt).  

For histopathology studies, the right lung (consisting of apical, cardiac, azygos, and 

diaphragmatic lobes) was embedded in paraffin then a 5 µm standardized section was cut.  Slides 

were stained with hematoxylin and eosin and interpreted by a contracted board certified 
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veterinary pathologist in a blinded fashion. Any type or degree of lung injury and inflammation 

in the airways and alveolar region and evidence of changes in lung structure related to allergy 

including thickening around airways (epithelium and/or smooth muscle), eosinophil and 

lymphocyte influx, and development of bronchus-associated lymphoid tissue was evaluated. If 

abnormal changes were found, severity was scored as follows: 1 = minimal, 2 = mild, 3 = 

moderate, 4 = marked.   

Experimental Protocol 2: Two-stage (initiation-promotion) lung tumor bioassay 

Male A/J mice (200) were organized into 5 groups (n = 40 per group) for a two stage 

initiation-promotion study.  Mice were initiated with 3-methylcholanthrene (MCA) or corn oil 

(vehicle control) by intraperitoneal (IP) injection.  Beginning one week later, mice were exposed 

once per week to a mixture of Cr2O3 + CaCrO4 (146.2 µg/2.2 µg), NiO (56.2 µg), Fe2O3 (400 

µg), or PBS (sham control) for 5 weeks via oropharyngeal aspiration (Figure 3A).  The 

cumulative dose Cr2O3 + CaCrO4 (731 µg/11 µg), NiO (281 µg), Fe2O3 (2 mg) was equivalent to 

the bolus high dose for each metal oxide as described in experimental protocol 1 (Figure 3B). 

Mice were weighed after a short acclimation period, throughout the dosing, and at sacrifice.  

At 30 weeks post-initiation, A/J mice were euthanized as described above. All internal 

organs were examined for the presence of tumors. The whole lung was then excised. The lungs 

were inflated and fixed with 10% neutral buffered formalin for 24 hours. Tumors were counted 

and measured 24 hours after fixation. Any apparent merged tumors were counted as one. Lungs 

were embedded in paraffin, and then a 5-μm standardized section was cut. Slides were stained 

with hematoxylin and eosin and interpreted by a contracted, board-certified veterinary 

pathologist in a blinded fashion for evidence of hyperplasia and neoplasia, inflammation, 

lymphoid tissue response, and foreign materials by light microscopy. Diagnostic criteria for 
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hyperplastic and neoplastic findings were according to goRENI (http://www.goreni.org/), the 

standard reference for nomenclature and diagnostic criteria in toxicologic pathology and 

“INHAND”—the International Harmonization of Nomenclature and Diagnostic criteria [15, 16]. 

If abnormal changes were found, severity was scored using the following scale: 1 = minimal, 2 = 

mild, 3 = moderate, 4 = marked. The final severity score reflects the average of the right and left 

lung lobe scores and are presented as means ± standard error. Because bronchiolo-alveolar 

hyperplasia (BAH) and bronchiolo-alveolar adenomas (BAA) represent a continuum of the 

proliferative process, and there is possible overlap between these diagnoses, the numbers of 

lesions were combined to compare the tumorigenic potential of each treatment [16]. However, 

the gross tumor count at necropsy is more representative of the response because examination of 

a single histological section per lung underestimates the total number of lesions per lung [17]. 

Statistical comparisons and analysis 

Statistical analyses were done using JMP version 12 and SAS version 9.4 for Windows 

(SAS Institute, Cary NC, USA). Factorial analysis of variance (ANOVA) was performed on 

continuous variables from the BAL fluid and the log fold changes from the PCR analytes to 

make comparisons between the treatment groups. For some variables, data were log transformed 

to reduce heterogeneous variance and meet the assumptions of an ANOVA. Histopatholgoical 

findings using the graded scale were analyzed using nonparametric Kruskal Wallis tests followed 

by Wilcoxon Rank Sum tests for pairwise comparisons. Gross tumor counts and histopathology 

counts from sections were analyzed similarly. Tumor incidence (presence or absence of tumors) 

was analyzed using a Chi-square test in SAS ‘Proc Freq,’ while tumor multiplicity (number of 

tumors per lung) was analyzed using Poisson regression in SAS ‘Proc Genmod’. In cases where 

overdispersion existed, a negative binomial regression was performed using data from those 
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animals surviving to the 30-week time point. For all analyses, a p value of <0.05 was set as the 

criteria for significance. 

Results 

Metal oxide characterization 

Table 1 summarizes results of the material characterization. Specific surface area (SSA) 

of the study materials ranged from about 1 to 6 m2/g, consistent with their smooth micronscale 

compact particle morphology (Figure 1), whereas the welding fume had SSA that was at least a 

factor of eight higher. The higher SSA of the welding fume is consistent with its nanoscale 

cluster particle agglomerates [18]. Among study materials, hydrodynamic diameter ranged from 

about 150 nm (chromium-containing particles) to 1000 nm (GMAW-SS).  For a given study 

material, values of hydrodynamic diameter were similar for both the high and low dose 

concentration suspensions, indicating that particles did not agglomerate at the higher 

concentration.  Values of zeta potential, which is a measure of colloidal stability, were similar 

among materials and for a given material did not differ between dosing concentrations.   

Lung Cytotoxicity after exposure to GMAW-SS fume or metal oxides 

At 1 day post-exposure, LDH activity in the BAL was significantly increased in all 

exposed groups compared to sham except for the low and high dose NiO groups (Figure 4). At 7 

days, lung cytotoxicity remained significantly increased in the GMAW-SS fume (~ 5 fold), Fe-

2O3 low and high (>2 and 3 fold, respectively), and the Cr2O3/CaCrO4 high dose groups. 

Cr2O3/CaCrO4 low and NiO groups were not significantly different from sham. At 28 days post-

exposure, only GMAW-SS fume- and Fe2O3 high-exposed groups had significant lung 

cytotoxicity. Cytotoxicity had decreased by 84 days, but remained significantly increased in the 

Fe2O3 high and GMAW-SS exposed groups.  
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BAL cell profile after exposure to GMAW-SS or metal oxides 

Total BAL cells were significantly increased compared to sham in all groups except for 

low and high dose NiO at 1 day post-exposure (Figure 5A). The greatest increase in total BAL 

cells at 1 day, 7 days, and 28 days post exposure was observed in GMAW-SS fume-exposed 

mice. The Fe2O3 high group also had significantly increased BAL cells at every time point. The 

BAL cell increases at 1 day post-exposure were mostly due to neutrophil influx, as few changes 

in macrophages were observed at this time point (Figure 5B and 5C).  However, significant 

neutrophil and macrophage influx was observed in GMAW-SS-exposed mice at 7 and 28 days 

post-exposure, but the macrophage influx was greater. Some eosinophil influx was observed in 

GMAW-SS, Cr low and high dose, and Fe2O3 high dose exposed mice 1 day post-exposure but 

this was minor compared to neutrophil and macrophage changes (data not shown).  By 28 days 

post-exposure, no eosinophils were present. At 84 days post-exposure, only GMAW-SS and Fe-

2O3 high groups had slightly increased total BAL cells compared to control mice which were 

largely due to increased macrophages. Neutrophils were not significantly increased in any 

treatment group at 84 days post-exposure. No lymphocytes were observed in the BAL fluid in 

any treatment group at any time point. Macrophages had a decreased ability to phagocytose E. 

Coli 1 day and 7 days post-exposure to all component metals but returned to control levels by 28 

days post-exposure (Figure 6).  

BAL cytokine analysis at 1 and 28 days post-exposure  

At 1 day post-exposure increases in G-CSF, GM-CSF, IL-5, IL-6, IP-10, KC, LIF, MIG, 

MIP-1α, MIP-1β, MIP-2, TNFα, and VEGF were noted in the exposed groups compared to sham 

(Table 2A). Most cytokine protein levels were highest in GMAW-SS-exposed groups and closest 

to sham in the NiO-exposed groups. GM-CSF levels were increased two to three-fold in only 
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GMAW-SS and Fe2O3 exposed animals at 1 day post-exposure but were increased almost six-

fold in GMAW-SS at 28 days post-exposure (Table 2B). Most other cytokines were not 

significantly increased above sham levels at 28 days post-exposure.  

Lung and liver gene expression analysis  

Relative lung and liver mRNA levels are shown for selected genes at 1 day post-exposure 

to GMAW-SS fume, Fe2O3 low, and Fe2O3 high in Table 3 and Figure 7. By 7 days post-

exposure, most liver and lung genes had returned to control levels in these treatment groups. 

However, metallothionein 1 (Mt1) was still increased ~3 to 4 fold in all three groups, and serum 

amyloid A1 (SAA-1) was increased ~3 fold and ~2 fold in GMAW-SS and Fe2O3 low dose 

groups, respectively, at 7 days post-exposure (data not shown).   

Fewer changes in lung and liver relative mRNA levels were observed in NiO or 

Cr2O3/CaCrO4 groups compared to the GMAW-SS and Fe2O3 exposed groups (data not shown). 

No changes in relative mRNA levels were seen in NiO low or high exposed groups in any genes 

at any time points. At 1 day post-exposure to Cr2O3/CaCrO4 low and high dose, levels of liver 

Mt1 and SAA-1 were significantly increased above sham (~5 and ~12 fold for low dose and ~8 

and ~17 fold for high dose Mt1 and SAA-1 levels, respectively; p < 0.05). At 7 days post-

exposure, Mt1 and SAA-1 levels were still significantly elevated ~ 2 and ~3 fold in the 

Cr2O3/CaCrO4 high dose exposed group, respectively (p < 0.05). Among relative lung mRNA 

levels, only heme oxygenase 1 (HMOX1) levels were significantly elevated in Cr2O3/CaCrO4 

high dose animals compared to sham (~2 fold; p < 0.05).  

Effects on body weight and survival post-welding fume or component metal exposure 

Mice for experimental protocol 1 weighed on average 18.33 ± 0.13 g at the start of 

dosing. Mice for experimental protocol 2 weighed on average 18.94 ± 0.13 g at the start of 
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dosing. All groups gained weight throughout the study and there were no significant differences 

found among the exposure groups versus sham for either protocol.  

Histopathological evaluation of lung toxicity in A/J mice 

Abnormal morphological findings and inflammation are presented in Table 1 with images 

in Figure 8.  The response to NiO exposure was characterized by the presence of black foreign 

bodies and pigmented macrophages in terminal bronchioles and adjacent alveoli. At 1 and 7 days 

post-exposure, there was minimal to mild infiltration of neutrophils around terminal bronchioles 

and/or vessels in some instances. The response to the high dose was not notably different from 

the low dose, with the exception that black pigment and pigmented macrophages were more 

often detected 84 days post-exposure. 

The response to Cr2O3/CaCrO4 exposure was characterized by the presence of black 

foreign bodies and pigmented macrophages in terminal bronchioles and adjacent alveoli. At 1 

and 7 days post-exposure, there was minimal infiltration of neutrophils around terminal 

bronchioles and/or vessels and neutrophil exudate in bronchiolar and alveolar lumens in many 

animals, especially in the high dose exposure animals.    

Exposure to Fe2O3 was characterized by the presence of black foreign bodies and 

pigmented macrophages in terminal bronchioles and adjacent alveoli.  At 1 and 7 days, there was 

minimal or mild infiltration of neutrophils around terminal bronchioles and/or vessels and 

neutrophil/macrophage exudate in alveolar lumens in many animals, especially in the high dose 

group. Hyperplasia of bronchiolar epithelium was rarely present.  At 84 days, black foreign 

bodies and pigmented macrophages were consistently present in terminal bronchioles and 

adjacent alveolar lumens.  Also, at 84 days the incidence and severity of lymphoid nodules was 

slightly increased. 
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The response to GMAW-SS fume was greater than any of the metal oxides alone and 

characterized by the presence of brown foreign bodies and pigmented macrophages in terminal 

bronchioles and adjacent alveoli. At 1 and 7 days post-exposure there was a prominent 

neutrophil response often filling both terminal bronchioles and adjacent alveoli. Also, the 

alveolar walls are often thickened due to mononuclear cell infiltration and hyperplasia of 

bronchial epithelium was also sometimes present at 1 and 7 days. Amorphic brown foreign 

bodies were occasionally present in bronchial lumens, particularly at 1 and 7 days post-exposure. 

At 28 and 84 days post-exposure, the response tended to transition from neutrophilic to 

mononuclear cell (macrophage and lymphocyte), including formation of lymphocytic nodules 

around vessels in affected regions. Notable lesions were still present on day 84, including 

pigment in terminal bronchioles that is surrounded by spindle shaped mononuclear cell that 

appeared to be walling off a focal accumulation of brown pigment.   

Gross tumor multiplicity and incidence 

Among the component metals, only Fe2O3 significantly promoted lung tumors in the A/J 

mouse after initiation with MCA compared to MCA/sham (15.18 ± 0.83 and 9.78 ± 0.80, 

respectively; p <0.0001). The grossly observed lung tumor multiplicity (average tumor 

number/mouse lung ± SE including mice with no tumors) after exposure to MCA or a metal 

oxide is shown in Figure 9. There was no effect of the other metal oxides or sham on lung tumor 

multiplicity (MCA/NiO, 8.62 ± 0.69; MCA/Cr2O3/CaCrO4, 10.57 ± 0.72; MCA/sham, 9.78 ± 

0.80; CO/sham, 0.14 ± 0.07).  As expected, average tumor incidence (% of tumor-bearing mice 

out of the total) was low in animals initiated with CO (CO/sham, 13.79%) and at or near 100% in 

animals initiated with MCA (MCA/sham, 100%; MCA/Cr2O3/CaCrO4, 97.22%; MCA/NiO, 

100%; MCA/Fe2O3, 100%). Gross lung morphology 1 day post-fixation in sham, Cr2O3/CaCrO4, 
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NiO, and Fe2O3 exposed mice is presented in Figure 10. Fe2O3 and Cr2O3/CaCrO4 deposition 

were visible in mouse lungs and appeared red and green in color, respectively. Tumors appeared 

white in color and opaque on initial gross exam and became well-defined after fixation which 

aided enumeration. At 30 weeks, tumors were between ~0.5 and ~3 mm. Average tumor size was 

1.00 mm, 1.30 mm, 1.17 mm, 1.18 mm, and 1.11 mm for CO/Sham, MCA/sham, MCA/NiO, 

MCA/Cr2O3/CaCrO4, and MCA/Fe2O3, respectively. No significant difference in sizes among 

groups was found. 

Histopathological evaluation of lung lesions, inflammation, and presence of metals 

 Microscopic findings of the lungs of mice exposed to MCA and one of the metal oxides 

or sham are presented in Table 2. The most common findings were one or more bronchiolo-

alveolar adenomas, and one or more foci of alveolar epithelial hyperplasia. Adenoma and 

hyperplasia were observed in the right and/or left lungs in all animals in all treatment groups.  No 

carcinomas were observed. A few of the adenomas in this study were well demarcated and 

formed solid hypercellular masses and/or hypercellular papillary structures that had replaced the 

normal alveolar architecture. The adenomas were composed primarily of cells that appeared 

similar to those of hyperplasias, although some slightly enlarged, somewhat atypical appearing 

cells with enlarged nuclei were sometimes present. Mitotic figures were rare. Maintenance of the 

normal alveolar structure versus replacement by an abnormal growth pattern, is the single most 

important characteristic distinguishing hyperplasia from adenoma.  Alveoli within larger 

hyperplasias generally were collapsed and appeared hypercellular, but close examination of the 

lesion demonstrated that the normal alveolar structure was still intact and that the lesion was a 

hyperplasia and not an adenoma. Alveolar epithelial hyperplasia was greatest and most severe in 

MCA/Fe2O3 exposed mice. Foreign material, presumably the metal, was observed in MCA/NiO, 
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MCA/Fe2O3, and MCA/Cr2O3/CaCrO4 treatment groups. The foreign material appeared as 

multiple, widely scattered individual or small clusters of minute discrete focal aggregates of 

black granules.  In some cases the granules clearly were present within an alveolar histiocyte. In 

other cases the granules appeared to be within an alveolar histiocyte but the histiocyte was 

obscured by the granules. Occasionally, granules were scattered within an alveolus and not 

within a histiocyte. Mild lymphocytic infiltrate was observed in a few MCA/ Fe2O3and 

MCA/Cr2O3/CaCrO4 exposed animals but was not significantly different than control. Total lung 

lesions, recorded as the average of hyperplasias and adenomas per mouse lung, were 

significantly increased in MCA/ Fe2O3 exposed animals only compared to controls (6.91 ± 0.52 

versus 4.33 ± 0.64, respectively; p < 0.0001). 

Discussion 

The results of this study show that the total GMAW-SS fume is more pneumotoxic than 

any of the individual component metal oxides. These findings are consistent with other studies 

which have shown that components of the fume are less toxic than the total fume [9, 19]. Among 

the metals present in GMAW-SS fume, Fe2O3 was the most toxic and the only metal oxide to 

significantly promote lung tumors at a dose equivalent to the weight percentage found in the 

fume.   

 Numerous worker and animal studies have implicated chromium as contributing to lung 

cancer development, and Cr6+ is classified as carcinogenic to humans (Group 1) by the IARC 

[20-24]. While Cr6+ has been linked to cancer, research concerning Cr3+ is more conflicting and 

Cr3+ is not currently classified by the IARC [22].  It has been reported that Cr3+ cannot enter cells 

as readily as Cr6+ and is therefore less harmful [3, 21]. However, Cr6+ is reduced to Cr3+ once 

inside cells and in the process can generate reactive oxygen species which damage DNA [21].  In 
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the present study, Cr2O3/CaCrO4 exposure did not promote lung tumors in the two-stage mouse 

model but did cause mild cytotoxicity and inflammation at 1 day and 7 day post-exposure. 

However, Cr exposure resulted in smaller BAL cytokine, gene expression, and lung 

histopathology changes compared to Fe and GMAW-SS fume. The mild cytotoxicity and lack of 

tumorigenic effect may be due to the low doses used in this study. Nettesheim et al. 1971 

performed one of the first in vivo Cr6+ exposure studies, exposing C57BL/6 mice to calcium 

chromate via inhalation for 5 hours per day, 5 days per week for the lifetime of the animals [25].  

They observed a fourfold increase in adenoma incidence in mice chronically exposed to calcium 

chromate [26]. Although the inhalation dose used in Nettesheim et al. was not reported, the 

authors performed a subsequent study in hamsters exposed intratracheally to 15 weekly calcium 

chromate injections of 0.5 or 0.1 mg for a total dose of 7.5 and 1.5 mg, respectively, and they 

also observed increased lung lesions in these animals [26]. Steinhoff et al. performed 

intratracheal instillation of Cr6+ once per week for up to 30 months in rats and saw no lung tumor 

incidence at doses of 0.05 or 0.25 mg/kg Cr6+[27]. Instead, they observed that 17.5% of rats that 

received a single 1.25 mg/kg dose developed tumors in the lung. This suggests that a single, 

higher dose is more tumorigenic than multiple smaller doses of Cr6+.  Similarly, Glaser et al. 

exposed rats to Cr6+ via inhalation and found zero incidence of lung cancer (adenomas and 

adenocarcinomas) at 25 and 50 µm/m3 while at concentrations of 63 µm/m3 and 100 µm/m3, rats 

had 5% and 15% incidences of lung cancer, respectively [28]. Therefore, these studies suggest 

that higher doses of Cr6+ are needed to observe its carcinogenic effects in vivo [25]. In contrast, 

while the dose of Cr6+ utilized in this study (cumulative 11 µg) reflected the percentage found in 

the GMAW-SS fume, it may have been too small to cause a tumorigenic effect.  Interestingly, 
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both Steinhoff et al. and Glaser et al. also concluded that inflammation was essential for 

tumorigenesis, and in this study Cr caused only mild inflammation and cytotoxicity.  

 Like Cr6+, Ni is classified as carcinogenic to humans by the IARC, with support from 

many worker and animal studies [24, 29-32]. In particular, Ni (II) seems to be the most 

carcinogenic Ni species, damaging DNA directly as well as through reactive oxygen species 

production, epigenetic effects, and chromosomal aberrations [24, 30, 31, 33-39]. In 2012, the 

IARC concluded that high cytotoxic concentrations as well as the presence of inflammation may 

be needed to see some of these potentially carcinogenic effects [24, 34, 37, 40, 41]. In the present 

study, Ni was not cytotoxic or inflammatory, which may explain its lack of tumor promotion. 

Few in vivo studies have specifically investigated the tumorigenic potential of NiO, which is the 

main form of Ni found in welding fumes [24]. Most notably, the National Toxicology Program 

performed studies which demonstrated that NiO caused inflammation and tumorigenesis in F344 

rats and B6C3F1 mice; however, these were all inhalation studies utilizing higher doses [42]. 

NiO concentrations of 1.25, 2.5, or 5 mg/m3 by inhalation for 6 hours/day, 5 day/week for 104 

weeks in mice increased the incidence of alveolar and bronchiolar adenomas and/or carcinomas. 

Additionally, inhalation exposures may be more toxic than oropharyngeal aspiration exposures, 

as Antonini et al. demonstrated that welding fume, when freshly generated, caused more lung 

inflammation than aged fume dosed via intratracheal instillation due to higher production of free 

radicals [43]. Thus, the exposure route and low doses used in this study could partially explain 

the lack of lung tumor promotion by NiO that we observed. Nevertheless, the doses used in this 

study were calculated to represent the actual percentages of these metals in the GMAW-SS fume, 

and the objective of this study was not to evaluate if NiO could act as a lung tumor promoter. 
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Rather, we sought to determine what metal oxides(s) may be responsible for the carcinogenic 

properties of SS fume. This study suggests it may not be just Cr or Ni.  

 An Interesting finding in this study was that among the metal oxides, Fe2O3 was the only 

metal to significantly promote lung tumors in vivo. While it is well known that iron overload can 

contribute to the development of a variety of cancers, Fe is currently not classified as to its 

carcinogenicity by the IARC [44, 45]. This is largely due to the fact that most occupational 

exposures to Fe are mixed exposures to Fe as well as other metals or potential carcinogens, 

making epidemiologic studies of worker exposures difficult to associate a carcinogenic effect 

[22]. The results of this study support the epidemiology that mild steel welders, despite exposure 

to mainly Mn and Fe, are at increased risk of lung cancer [7, 8, 46]. Fe2O3 was also the most 

pneumotoxic of the component metals, as the Fe high dose group still had significant lung 

cytotoxicity and macrophages at 28 days post-exposure. Similarly, among the component metals, 

Fe had the greatest effects on increased BAL cytokine levels, liver relative mRNA abundance, 

and histopathological lung findings.   

Interestingly, GMAW-SS fume was more cytotoxic than any of the individual metals. 

While this study demonstrated that none of the metals besides Fe could individually promote 

lung tumors, previous studies in our lab have demonstrated that GMAW-SS fume promotes lung 

tumor in A/J mice after both oropharyngeal aspiration and inhalation exposure [11, 13]. Results 

from previous studies have also suggested that the total fume may be more cytotoxic than any of 

its individual components. Earlier studies in our laboratory have shown that SS fume is more 

pneumotoxic than Cr after four bolus doses in mice, causing a greater increase in LDH, 

lymphocyte and neutrophil levels [9]. Antonini et al. observed that the lung toxicity and 

inflammation of SS fume from manual metal arc welding was due to both the soluble and 
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insoluble fraction of the fume, with neither fraction individually having as much toxicity as the 

total SS fume. They observed that the toxicity of the soluble and insoluble fractions were equal 

and added together to equal the toxicity of the total fume [19]. The results of these studies along 

with our findings suggest that the metal oxides may have a synergistic or additive effect when 

combined in the fume to create a greater toxicity than any individual component can have alone. 

Abnormal morphological lung histopathological changes were also found in mice 

exposed to GMAW-SS fume, including both a mononuclear and neutrophilic infiltration that was 

not observed with the individual metals. Changes in BAL cytokine levels as well as liver mRNA 

abundance were also greatest in GMAW-SS fume-exposed groups. Most notably, GMAW-SS 

fume increased G-CSF and IP-10 protein levels, which promote neutrophil survival and function 

and act as a chemoattractant for macrophages, respectively. These cytokine changes mirror the 

neutrophil and macrophage influx that was observed in the BAL at the early time points. The 

greatest changes in gene expression were observed in liver of GMAW-SS WF exposed mice at 1 

day post-exposure, with increased expression of Mt1, Mt2, and SAA-a in Fe and GMAW-SS 

exposed mice compared to controls, indicating a potential acute phase protein response.  

There are a number of limitations to this study. First, the metal oxides which the mice 

were exposed to are pure oxides and not isolated directly from the fume. The metals in the 

freshly generated fume are likely more complex and may consist of different chemical 

compositions of these oxides; therefore, the oxides in the fume may also differ in morphology 

and reactivity compared to those used in this study.  For this reason, we characterized the metal 

oxides used in this study and noted that each oxide had much smaller SSA and different 

hydrodynamic diameters than the GMAW-SS. A second limitation to this study was that the 

exposures were done by oropharyngeal aspiration. Although this is a well-established method, it 
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is a bolus dose and less representative of actual worker inhalation exposures. A further limitation 

of this study is that we only dosed metals individually and did not combine different metals in 

doses which eliminated the ability to observe any specific potential additive or synergistic effects 

among two metal oxides. 

In summary, the results of this study provide new insight into the toxicity and 

tumorigenic potential of the metal oxide components of welding fumes. In particular, it was 

shown that Fe2O3 is a lung tumor promoter in vivo and may be the main metal oxide responsible 

for the carcinogenic effect of SS fume. Additional studies can be focused on further investigating 

these metal components in vivo and in vitro and exploring potential mechanisms of 

tumorigenesis of welding fumes and their component metal oxides.  
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Figure legends  

 

Figure 1A, B, C, D. Panel A - Low and high doses of the metal oxides or GMAW-SS fume. 

Panel B- Scanning electron microscopy images of NiO (panel B), Fe2O3 (panel C), and Cr2O3 

/CaCrO4 (panel D). 

Figure 2. Experimental timeline and block design for Experimental protocol 1: BAL and 

histopathology/gene expression studies. The experimental timeline shows 4 time points for 

sacrifice post-exposure. Two groups of 256 mice were used for parallel BAL and 

histopathology/gene expression studies. Each group of 256 mice was separated into 4 blocks 

with 8 treatment groups corresponding to the low or high doses of metal oxides, sham or 

GMAW-SS fume (8 groups * 8 mice/group * 4 blocks = 256 mice).  

Figure 3. Experimental protocol 2: Two-stage initiation-promotion lung tumor bioassay. 

200 male A/J mice were organized into 5 groups: MCA/NiO, MCA/Cr2O3 + CaCrO4, MCA/ 

Fe2O3, MCA/sham, or CO/sham. Beginning one week post-initiation with MCA or CO, mice 

were exposed to the metal oxide or sham by oropharyngeal aspiration once per week for 5 weeks 

(panel a). Doses of metal oxides were the cumulative high doses from experimental protocol 1 

(panel b). 

 

Figure 4. LDH activity after exposure to GMAW-SS fume or metal oxides. Data are 

presented as percent control compared to sham (dashed line). *p<0.0001 compared to control, 

**p<0.0001 compared to control and all other low dose groups, #p<0.0001 compared to low and 

high dose metals within a group. 
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Figure 5. Total BAL cells (panel a), neutrophils (panel b), and macrophages (panel c) after 

exposure to GMAW-SS fume or metal oxides. *p<0.0001 compared to control, **p<0.0001 

compared to sham and all other low dose groups, #p<0.0001 compared to low and high dose 

metals within a group. 

Figure 6. Ability of macrophages to phagocytose E. Coli green fluorescent protein after 

exposure to metal oxides. E. Coli uptake by macrophages was quantified by flow cytometry. 

*p<0.05 – compared to sham 

Figure 7. Relative mRNA levels at 1 day post-exposure to GMAW-SS, Fe2O3 low, or Fe2O3 

high in the lung (panel A) or liver (panel B). Data presented as fold change respective to 

relative sham **p < 0.001 compared to sham, *p<0.05 compared to sham. 

Figure 8. Lung histopathological findings following exposure to GMAW-SS or metal 

oxides. Exudate and brown material (arrow) in the bronchial lumen of a mouse exposed to 

GMAW-SS fume and sacrificed 1 day post-exposure (panel A; 10x magnification).  

Mononuclear cell infiltrate of alveolar wall in a mouse exposed to GMAW-SS fume (panel B; 

20x magnification) or low dose Fe2O3 (panel C; 40x magnification) and sacrificed 7 days post-

exposure. A bronchiolo-alveolar adenoma in an Fe2O3 - exposed mouse 30 weeks post-initiation 

with MCA at 10x magnification (panel D) and 20x magnification(panel E).   

Figure 9. Total tumor number per mouse lung following exposure to CO or MCA and a 

metal oxide or sham. Bars represent lung tumor multiplicity (average tumor number per mouse 

lung) for each group. *p<0.0001 compared to CO/Sham, **p<0.0001 compared to MCA/sham   
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Figure 10. Grossly observed lung tumors pre-fixation (left) and 24 h post-fixation (right) 

following exposure to Cr2O3/CaCrO4 (panel A), Fe2O3 (panel B), and NiO (panel C). 

Tumors (arrows) were on average ~1mm and opaque in color.  
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Figures 
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Figure 6. 
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Figure 7. 
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Figure 8. 

 

 

 



www.manaraa.com

158 

 

 

Figure 9. 
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Figure 10. 

 

 

 

 

 



www.manaraa.com

160 

 

 

Tables 

Table 1 

 

Sample Dose SSA (m2/g) Hydrodynamic 

Diameter (nm) 

Zeta Potential 

(mV)** 

Cr2O3/CaCrO4 
High 

2.7 ± 0.01 /0.78 ± 0.01 
147 ± 0.3* -28.7 ± 2.1 

Low 142 ± 2.0* -28.4 ± 2.3 

Fe2O3 
High 

6.0 ± 0.01 
699 ± 200 -31.4 ± 0.9 

Low 639 ± 32 -32.0 ± 0.8 

NiO 
High 

2.0 ± 0.01 
124 ± 0.6* -25.8 ± 2.0 

Low 126 ± 1.1 -28.1 ± 1.7 

GMAW-SS -- 53.1 ± 0.26 1068 ± 197 -27.1 ± 0.8 

Table 1. 

*Value determined using NTA, all other values determined using DLS 

**pH of study materials: Cr2O3/CaCrO4 high (7.2), low (7.3); Fe2O high (7.4), low (7.4); NiO 

high (7.4), low (7.4); GMAW-SS (6.9) 
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Table 2 

 

A. 

 

B. 

 

 

Table 2. BAL cytokine analysis at 1 d (panel a) and 28 d (panel b) post-exposure to component 

metals or sham.   
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Table 3 

 GMAW-SS Fe2O3 low Fe2O3 high 

Liver genes 

HAMP 1.58 ± 0.25 1.3 ± 0.30 1.23 ± 0.24 

MT1 74.64 ± 9.02* 29.89 ± 18.16* 42.26 ± 13.46* 

MT2 9.65 ± 2.58* 7.41 ± 5.03** 8.59 ± 3.23* 

HP 3.93 ± 0.64* 3.24 ± 1.48* 2.31 ± 0.48* 

SAA-1 136.57 ± 38.32* 72.02 ± 51.83* 84.34 ± 31.52* 

Lung genes 

p21 2.29  ± 0.28 * 1.05  ± 0.08 1.05  ± 0.08 

CDK4 1.19  ± 0.16 0.89  ± 0.09 0.86  ± 0.06 

Nr1d1 1  ± 0.17 1.37  ± 0.19 1.07  ± 0.28 

Nr1d2 1.34  ± 0.21 1.95  ±  0.31** 1.67  ± 0.47 

Hmox1 2.69  ±  0.23* 1.54  ±  0.15** 1.92  ±  0.37** 

Tfrc 1.37  ± 0.15 1.13  ± 0.10 1.37  ± 0.28 

Slc40a1 1.32  ±  0.12** 1.05  ± 0.06 1.15  ± 0.13 

Sox 9 1.63  ± 0.23 2.76  ±  0.55** 4.36  ±  1.24** 

 

Table 3. Relative mRNA levels as mean fold change compared to sham (mean fold change of 1) 

in the lungs and liver at 1 day post-exposure to GMAW-SS or Fe2O3 low or high dose. No 

changes were seen for NiO treated animals for any gene at any time point. GMAW-SS – gas 

metal arc welding – stainless steel, HAMP - hepcidin , Mt1 – metallothionein 1, Mt2 - 

metallothionein 2, HP – haptoglobin, SAA1 - serum amyloid A1, p21 – cyclin-dependent kinase 

inhibitor 1, CDK4 – cyclin-dependent kinase 4, NR1D1 – nuclear receptor subfamily 1 group D 

member 1, NR1D2 - nuclear receptor subfamily 1 group D member 2, HMOX1 – heme 

oxygenase 1, TFRC – transferrin receptor, SLC40A1 – solute carrier family 40 member 1, SOX 

9 – SRY – box 9 

* p < 0.0001, ** p < 0.05  
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Table 4 

  

n 

Infiltration, 

mononuclear  

Infiltration, 

neutrophils 

Pigmented 

macrophages 

Foreign 

bodies, black 

hyperplasia phagocytes 

with cell 

debris 

Neutrophilic 

exudates 

Sham 6 -- -- -- -- -- -- -- 

NiO low 6 -- 1.33 ± 0.42 1 ± 0.26 1 ± 0.26 -- -- -- 

NiO high 6 -- 1.67 ± 0.21* 1.17 ± 0.17 1.17 ± 0.17 0.67 ± 0.33 0.33 ± 0.33 -- 

Cr2O3/CaCrO4 low 6 1 ± 0.45 1.67 ± 0.21* 2 2 0.17 ± 0.17 1.33 ± 0.42 -- 

Cr2O3/CaCrO4 high 6 0.83 ± 0.40 1.33 ± 0.33 2.67 ±  0.21** 2.67 ±  0.21* 0.17 ± 0.17 1.67 ± 0.76 1 ± 0.52 

GMA-SS 6 2.17 ±  0.17** 1.67 ±  0.21* 2.83 ±  0.17^ 3** 0.67 ± 0.42 3.17 ±  0.17** 1.83 ± 0.60 

Fe2O3 low 6 1.17 ± 0.17 1 2.5 ±  0.22* -- -- 1.67 ± 0.42 -- 

Fe2O3 high 6 1 ± 0.37 1.83 ±  0.17** 3^ 4 ±  0.26^ 0.33 ± 0.33 1.5 ± 0.5 0.5 ± 0.5 

Table 4. Abnormal morphological findings in lungs of mice 1 day post-exposure to GMAW-SS 

fume, low and high dose metal oxides, or sham. Severity scores are the averages of the right 

lung lobes and presented as mean ± standard error. Severity was scored as 1 = minimal, 2 = 

mild, 3 = moderate, 4 = marked. *p < 0.03, ** p < 0.003, ^ p < 0.0007 - compared to sham. 

GMAW-SS: gas metal arc welding – stainless steel; MCA: 3-methylcholanthrene. 
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Table 5 

 

Table 5. Two stage (initiation-promotion) lung cancer bioassay: Lung histopathology severity 

scores for abnormal morphological findings and number of lesions in A/J mice at 30 weeks  

*Severity scores are the averages of the left and right lung lobes and presented as mean + standard 

error. Severity was scored as 1 = minimal, 2 = mild, 3 = moderate, 4 = marked.     

**hyperplasia and adenoma were the only two lung lesions present and represented as count data 

presented as average or total lesions (in parenthesis). 

-- indicates no findings 
^p < 0.0001 - compared to MCA/sham 
+p < 0.003 - compared to MCA/sham 

GMAW-SS: gas metal arc welding – stainless steel 

MCA: 3-methylcholanthrene 

 n Lymphocytic 

infiltrate* 

Foreign 

material* 

Hyperplasia 

severity* 

Alveolar epithelial 

Hyperplasia** 

Bronchiolo-

alveolar 

adenoma** 

Total lesions** 

MCA/sham 24 -- -- 1.69 ± 0.30 3.00 ± 0.60 (75) 1.33 ± 0.25 (32) 4.33 ± 0.64 (107) 

MCA/NiO 26 -- 0.77 ± 0.17^ 1.77 ± 0.42 2.77 ± 0.68 (72) 1.62 ± 0.48 (42) 4.38 ± 0.86 (114) 

MCA/ Fe2O3 33 0.45 ± 0.08 1.83 ± 0.05^ 2.33 ± 0.16+ 4.96 ± 0.44 (164) 1.94 ± 0.24 (64) 6.91 ± 0.52 (228)^ 

MCA/ Cr2O3/CaCrO4 32 0.06 ± 0.06 0.97 ± 0.05^ 2.19 ± 0.38 3.91 ± 0.90 (125) 1.50 ± 0.43 (48) 5.41 ± 1.02 (173) 
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Chapter 6: Lack of Lung Tumor Promotion after Inhalation of a Copper- 

Nickel Welding Fume in A/J Mice 

LM Falcone1,2, A Erdely1,2, R Salmen1, LA Battelli1, T Dodd1, M Keane1, W McKinney1, S 

Stone1, M Donlin1, HD Leonard1, JL Cumpston1, JB Cumpston1, R Mercer1, TB Chen1, RN 

Andrews3, M Kashon1, JM Antonini1, PC Zeidler-Erdely1,2 

!Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 
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Abstract 

The International Agency for Research on Cancer classified welding fumes as a Group 1 

(carcinogenic to humans) in 2017. The process of stainless steel welding creates fumes rich in 

carcinogenic metals such as chromium (Cr). Our lab has previously demonstrated that stainless 

steel welding fumes promote lung tumors in tumor susceptible A/J mice. Consumables devoid of 

Cr are being produced in an attempt to limit worker exposures to potentially carcinogenic metals. 

The aim of this study was to characterize a new copper-nickel (Cu-Ni) fume and then investigate 

if inhalation of this fume would promote lung tumors in mice using a two-stage (initiation-

promotion) model. Male A/J mice (4 – 5 weeks) were initiated with 3-methylcholanthrene (10 

µg/g intraperitoneally) or corn oil and beginning 1 week later were exposed to air or Cu-Ni 

welding fumes for 4 hours/day, 4 days/week, for 9 weeks. At 30 weeks, mice were sacrificed and 

lung tumor multiplicity and incidence were evaluated. MCA/Cu-Ni welding fume exposure 

significantly decreased tumor size and tumor number compared MCA/air controls (15.57 ± 0.75 

tumors vs. 7.11 ± 0.93 tumors and 1.15 mm in diameter vs. 0.57 mm in diameter, respectively). 

Characterization of the fume indicated that most of the particles were between 0.1 and 1 µm in 

diameter, with a mass median aerodynamic diameter of 0.43 µm. Future studies are planned to 

investigate the pneumotoxicity of Cu-Ni fume in A/J mice. 
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Introduction 

Welding, a method of joining metals, employs millions of workers around the world [1]. 

However, many types of welding produce significant amounts of fumes which are known to be 

hazardous to human health [2, 3]. Acute and chronic conditions such as metal fume fever, 

bronchitis, and increased infection incidence have been reported in welders [3-7]. However, 

welding fumes also cause lung cancer. Welding fumes are classified as carcinogenic to humans 

(Group 1) by the International Agency for Research on Cancer (IARC) and can contain metals 

such as iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), and nickel (Ni).[1] Cr and Ni 

are also classified as Group 1 carcinogens [8]. The carcinogenicity of welding fumes is 

sometimes favored to be due to Cr6+ which is present in the fume. In 2006, the Occupational 

Safety and Health Administration (OSHA) reduced the Cr6+ concentration in the workplace from 

52 to 5 ug/m3. This reduction can be challenging to maintain with stainless steel welding. For 

this reason, newer welding consumables containing primarily Cu and Ni have been produced that 

may prove less hazardous to workers’ health.  

Epidemiological studies have investigated lung cancer after exposure to both mild steel 

(MS) and stainless steel (SS) welding fumes. The former fume is composed of entirely Fe and 

Mn, while the latter contains Fe, Ni, Cr, Cu, and Mn. Most notably, worker studies suggest that 

both MS and SS fume exposures increase lung cancer in welders, even though MS fume contains 

no known human carcinogens [9-12]. There are no epidemiological studies investigating worker 

exposure to fume from the newer Cu-Ni welding consumables and only limited in vivo and in 

vitro studies on the pneumotoxicity of the fume are available. There are no in vivo studies on the 

tumorigenic potential of this fume. 

Previous studies in our laboratory have employed a two-stage (initiation-promotion) 

model of lung tumorigenesis to study welding fume exposure. It was demonstrated using a two-
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stage initiation-promotion model that GMAW-SS fume promotes lung tumors in A/J mice [13, 

14]. The aim of this study was to investigate if inhalation of a Cu-Ni welding fume would also 

promote lung tumor formation in A/J mice. Results of this study could help to clarify whether or 

not newer Cu-Ni welding consumables are safer alternatives to improve worker health.  

Methods 

Animals 

Male A/J mice (age 4–5 week) were purchased from Jackson Laboratories (Bar Harbor, 

ME) and housed in an AAALAC International - specific pathogen-free, environmentally-

controlled facility. All mice were free of endogenous pathogens including viruses, bacteria, 

mycoplasmas, and parasites. Mice were housed in groups of two in ventilated cages and provided 

high-efficiency particulate filtered air under a controlled light cycle (12 h light/12 h dark) at a 

standard temperature (22-24⁰C) and 30-70% relative humidity. Animals were acclimated to the 

animal facility for one week before beginning the experimental protocols and allowed access to a 

conventional diet (6% irradiated NIH-31 Diet, Envigo RMS, Inc.; Madison, WI) and tap water 

ad libitum. All procedures were performed using protocols approved by the National Institute for 

Occupational Safety and Health (NIOSH) Institutional Animal Care and Use Committee.  

Welding fume inhalation exposure system 

The design and construction of the welding fume aerosol generator were previously 

described [15]. This automated robotic welder continuously generated welding fumes by welding 

beads onto ¼ inch thick plates of mild steel. The welding wire used was 0.045 inch diameter 

Lincoln Electric Techalloy 413 MIG and the welding parameters were set to 25 volts DC, 300 

inch per minute wire feed, 30 L/min of 75% argon – 25% helium shielding gas, and a typical 

welding current of 200 amps. The resulting fume was carried into a whole body exposure 

chamber through a ¾ inch flexible tube by maintaining the chamber at a negative pressure (0.70 
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inch H2O). Particle concentrations within the exposure chamber were continuously monitored 

with a Data RAM (DR-40000 Thermo Electron Co; Franklin, MA), and gravimetric 

determinations (37 mm cassettes with 0.45 μm pore-size Teflon filters) were used to calibrate 

and verify the Data RAM readings each day. Gas generation, including carbon monoxide (CO), 

carbon dioxide (CO2), oxygen (O2), and ozone (O3), was continuously monitored. During the 

welding exposure, O2 levels were maintained above the OSHA minimal acceptable level. O3, CO, 

CO2 were below OSHA permissible exposure limits and NIOSH recommended exposure limits 

(REL) during the entire exposure duration. In the exposure chamber, CO and O3 levels were not 

significantly higher than background. The exposure system was modified slightly from that 

described previously to reduce the travel time of the particulate fume from the welding torch to 

the exposure chamber [15].  

Experimental protocol for welding fume metal analysis and characterization 

A small amount of welding fume was collected gravimetrically onto 47-mm Nucleopore 

polycarbonate filters (Whatman; Clinton, PA) for field emission scanning electron microscopy 

(FESEM) to assess particle size and morphology. The particles were imaged using a Hitachi 

S4800 Field Emission Scanning Electron Microscope (Hitachi; Tokyo, Japan). For elemental 

analysis of Cu-Ni fume, generated particles were collected inside the exposure chamber onto 5.0 

µm polyvinyl chloride membrane filters in 37-mm cassettes during three 30 minute collections. 

The particle samples were digested and the metals were analyzed by inductively coupled plasma 

atomic emission spectroscopy according to the NIOSH method 7303 for hot block/HCL/HNO3 

digestion (NIOSH, 1994) as previously described [15]. Metal content of blank filters also were 

analyzed for control purposes. To determine particle mass size distribution, a Micro-Orifice 

Uniform Deposit Impactor (MOUDI, model 110; MSP corp., Shoreview, Minn.) with additional 
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Nano-MOUDI stages (MSP model 115) was used. Lastly, welding fume samples were also 

analyzed using energy dispersive X-ray analysis (SEM-EDX; Princeton Gamma-Tech, Rocky 

Hill, N.J.) at 20 keV. 

Experimental protocol for whole lung metal analysis 

Weight-matched A/J mice were exposed by whole-body inhalation in individual steel 

mesh cages to Cu-Ni welding aerosols (mean concentration 43 mg/m3 over 4 hours) (n = 10) or 

filtered air (n = 6). Immediately following exposure (time zero), whole lungs were excised, 

trimmed, and lyophilized. The freeze-dried tissue was weighed then acid digested. Inductively 

coupled argon plasma atomic emission spectroscopy at NIOSH-Division of Applied Research 

and Technology (Cincinnati, OH) was used to determine the amount of Al, Ba, Ca, Co, Cr, Cu, 

Fe, K, Li, Mg, Mn, Ni, P, Pb, Sr, Ti, V, Zn and Zr present in the lung according to the draft 

NIOSH method 8200 used for bulk tissue samples (NIOSH 2003).   

Experimental protocol for two-stage lung carcinogenesis bioassay in A/J mice  

 For the two-stage initiation-promotion protocol, 120 mice were weight-matched and 

randomized into four exposure groups (n = 30/group). On day 1, mice were intraperitoneally (IP) 

injected with the chemical initiator, 3-methylcholanthrene (MCA) (Sigma-Aldrich; St. Louis, 

MO) dissolved in corn oil (CO) (Sigma-Aldrich; St. Louis, MO) at a dose of 10 µg/g of body 

weight or CO alone (Figure 1B). MCA was chosen as the initiating agent based on the efficient 

response of the A/J mouse to this carcinogen in our previous oropharyngeal aspiration and 

inhalation studies [14, 16]. Beginning 1 week post-initiation, mice were exposed by whole-body 

inhalation to Cu-Ni WF aerosols or filtered air for 4 hours/day, 4 days/week, for 9 weeks at a 

target concentration of 40 mg/m3 (actual mean concentration 32.6 over 9 weeks). Throughout the 

study, mice were weighed biweekly including at the terminal sacrifice at 30-weeks post-
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initiation. Mice were euthanized with sodium pentobarbital [100-300 mg/kg IP] (Vortech 

Pharmaceuticals; Dearborn, MI), weighed, and exsanguinated via the vena cava. All internal 

organs were examined for the presence of tumors. Then, the whole lung was excised and inflated 

with 10% neutral buffered formalin.  Twenty-four hours post-fixation, lung tumors were 

counted. Lung tumor incidence was recorded as the percent of tumor-bearing mice out of the 

total, and lung tumor multiplicity was determined as the average tumor number per mouse lung 

including mice with no tumors. Any apparent merged tumors were counted as one tumor. Lungs 

were embedded in paraffin before a 5 µm standardized section was cut and slides were made. 

Welding fume particles in sections from exposed lungs were assessed using an enhanced 

dark-field optical system. Welding fume particles scatter light significantly greater than the 

surrounding tissues due to a significant difference in refractive index, nanometer size and the 

crystalline structure of the particles. The enhanced dark-field optical system images light scattered 

in the section and, thus, particles in the section stand-out from the surrounding tissues with high 

contrast.  As has been described previously, this method of imaging can be used to scan lung 

sections at relatively low magnification to identify particles that would not be detected by other 

means [17-20]. Typically, the image intensity of particles in tissue sections is approximately 20-

fold that of the embedded tissue [20]. Sections for dark-field examination were cut from paraffin 

blocks at 5 microns thickness and collected on ultrasonically cleaned, laser cut slides (Schott North 

America Inc, Elmsford, N.Y. 10523) to avoid contamination from the ground edges of traditional 

slides. After staining with Sirius Red-Hematoxylin, slides were dehydrated in xylene and 

coverslipped with Permount  (Fisher Scientific Co., Pittsburgh, PA) containing 5%, by volume 

xylene.  Just before mounting, the xylene-Permount was centrifuged at 10,000 x g for 10 minutes 

to remove contaminating particles in the Permount. The optical microscopes consist of a 
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transmitted light microscope (Olympus B63 with motorized condenser, controller and reflected 

light system) and a CytoViva EDM (CytoViva, Auburn, AL 36830). The CytoViva EDM has a 

high signal-to-noise, dark-field illumination optical system adapted to an Olympus BX41 

microscope which also includes a hyperspectral imaging camera with ENVI 4.8 analysis software 

and the CytoViva 3-D positioning and analysis software for serial section reconstruction.  Both 

transmission light microscope and EDM were equipped with an Olympus DP73 digital camera 

with cellsens Dimension camera control and measurement software (Olympus America Inc., 

Center Valley, PA 18034).  Images for both systems were taken at either high resolution 

4800x3600 pixels or 2400x1800 pixels. 

Statistical comparisons and analysis  

Statistical analyses were performed using either JMP version 13, or SAS version 9.4 for 

Windows. Continuous variables were analyzed using treatment by day factorial analyses of 

variance (ANOVA), followed by Fishers LSD for pairwise comparisons.  For some variables, a 

natural log transformation was performed on the data to reduce heterogeneous variance and meet 

the assumptions of an ANOVA. Gross tumor counts were analyzed using nonparametric 

Kruskal-Wallis tests and followed by pair-wise comparisons using the Wilcoxon Rank Sums test. 

Tumor incidence was analyzed using a Chi-square test in SAS ‘Proc Freq,’ while tumor 

multiplicity was analyzed using Poisson regression in SAS ‘Proc Genmod.’ In cases where over 

dispersion existed, a negative binomial regression was performed. Analyses were performed 

independently on CO and MCA-treated animals and only utilized data from those animals 

surviving to the 30-week time point. For tumor size comparisons between MCA-treated animals, 

a two-sided t test was performed only on data from animals with tumors. For all analyses, a p < 

0.05 was set as the criteria for significance. 
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Results 

Characterization of Generated Welding Fume  

Elemental analysis indicated that GMAW-MS was primarily Cu and Ni (Table 1). Cu 

content by weight percent averaged 76.35% and Ni was 11.60 %. Approximately 5% of fume 

consisted of Ti and Mn and the remaining metal content of the fume was trace metals. Because 

welding is known to generate a significant number of nanosized particles, both MOUDI and 

Nano-MOUDI samplers were used to determine particle size distribution. Most of the particles 

were between 0.1 and 1 µm in diameter, with a mass median aerodynamic diameter of 0.43 µm 

(Figure 2).   

Enhanced Dark-field Light Microscopy Imaging of Welding Fumes 

Enhanced dark-field microscopy confirmed the deposition of Cu-Ni welding fume particles 

in fume-exposed animals as the particles scattered light at a much greater intensity than the 

surrounding lung tissues (Figure 3). The lung tissue adjacent to the fume deposits was made visible 

only by the addition of transmitted light. Welding particle deposits appeared almost exclusively 

inside macrophages, indicating this fume is phagocytosed by alveolar macrophages. Microscopy 

images of air-exposed mice showed intact lung tissue and the presence of macrophages devoid of 

any particulate matter. No difference was seen in microscopy images of MCA or CO-exposed 

mice, indicating that the MCA or CO exposure did not affect lung burden of fume.   

Whole lung metal deposition after Cu-Ni fume inhalation 

The lung metal deposition in A/J mice measured at time 0 after 4 hours of inhalation of 

Cu-Ni fume is shown in Table 2 and was calculated as done previously [16]. The most abundant 

metals measured were Cu (5.11 µg Cu/7.33 µg total metal deposition = 69.7 %) and Ni (1.18 µg 

Ni/7.33 µg total metal deposition = 16.1%), which equates to the elemental analysis of the 

GMAW-MS fume shown in Table 1. 
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Human relevance deposition calculation: 

The analysis of the metals showed a cumulative increase of 7.33 μg of total Cu-Ni fume 

deposited in the lung from a single 4 hour exposure (Table 2). The alveolar deposition in the 

mice was equated to the human by the equations below using the previous threshold limit value-

time weighted average (TLV-TWA) of 5 mg/m3 for total welding fume. Previously, we 

estimated that 70% of the total dose reached the alveolar space (7.33 µg/d x 0.70 = 5.13 µg/d) 

[21, 22]. The mice were exposed for 36 days (9 weeks at 4 days/week) for an approximate total 

alveolar deposition of 184.68 µg. 

Estimated human daily deposition using previous welding fume TLV-TWA of 5 mg/m3: 

Fume concentration x min volume x exposure duration x deposition efficiency = deposited 

human dose 

5 mg/m3 x (20 l/min)(10-3 m3/l) x (8 hours/day)(60 minutes/hour) x 0.16 = 7.7 mg deposited per 

8 hour day in humans 

Estimated human equivalent deposition from quantified deposition in mouse using alveolar 

surface area (SA)[23] 

(SAhuman x depositionmouse) / SAmouse = depositionhuman 

(102 m2 x 0.18468 mg) / 0.05 m2 = 376.75 mg  

376.75 mg / 7.7 mg/day = approximately 49 working days for a human working at 5 mg/m3 for 8 

hours/day. While it is understood that welding is usually not done for 8 hours/day, and the 

exposure levels are likely not to consistently reach 5 mg/m3 as a TWA, the deposition in this 

study model was representative of cumulative exposure in a human.  

Gross tumor multiplicity and incidence  
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Cu-Ni welding fume significantly decreased lung tumors in mice at 30 weeks after 

initiation with MCA (Figure 4). Lung tumor multiplicity was 15.57 ± 0.75 and 7.11 ± 0.93 for 

MCA/air and MCA/Cu-Ni fume, respectively (p < 0.0001). There was no effect of welding fume 

alone on tumor multiplicity (CO/air, 0.30 ± 0.12; CO/GMAW-MS, 0.07 ± 0.05). The percentage 

of tumor-bearing mice out of the total (tumor incidence) was 22 % in CO/air and 7 % in 

CO/GMAW-MS-exposed animals. This low tumor incidence in 35 to 36 week old, CO-exposed 

mice is consistent with previous studies in our lab as well as other reports in the literature [13, 

24, 25]. As expected, tumor incidence was high in all MCA-initiated groups (100% for MCA/air 

and 93% for MCA/Cu-Ni fume groups), which confirmed the successful administration as well 

as its carcinogenic effectiveness in A/J mice. The total and average tumor number per treatment 

group across each of the individual lung lobes is reported in Table 3. MCA/air-exposed mice had 

significantly greater lung tumor multiplicity in the left, apical, diaphragmatic, and azygos lung 

regions compared to MCA/Cu-Ni fume (p < 0.05).  

 Figure 5 shows the gross lung morphology of a MCA/air-exposed lung (panel A) and a 

MCA/Cu-Ni – exposed lung (panel B) 24 hours post-fixation with formalin. Welding fume 

deposition was not grossly visible in any exposed mouse lungs but was visible by enhanced 

darkfield microscopy (Figure 3). Tumors appeared white in color and opaque on initial gross 

exam and became more well-defined after fixation which aided enumeration. At 30 weeks, 

tumors were on average 1.15 mm in diameter in MCA/air-exposed mice and 0.57 mm in 

diameter in MCA/Cu-Ni fume-exposed mice (p < 0.0001).  

Morbidity and mortality 

Initial body weights at week 0 (means ± standard error [SE]) were 15.64 ± 0.48, 15.79  ± 

0.31, 15.76 ± 0.39, and 16.13 ± 0.43 g for the CO/air, CO/Cu-Ni WF, MCA/air, and MCA/Cu-Ni 
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WF groups, respectively. Body weights increased steadily from week 0 to 30 and did not differ 

among exposure groups.  At terminal sacrifice, body weights were 28.46 ± 0.43, 27.77 ± 0.50, 

28.29 ± 0.52, and 27.70 ± 0.64 g for the CO/air, CO/Cu-Ni WF, MCA/air, and MCA/Cu-Ni WF 

groups, respectively. Morbidity and mortality throughout the study was low (~7 %) and no 

abnormalities, such as other tumor types besides lung, were found at the terminal sacrifice at 30 

weeks. In total, 9 mice died during the course of the study and were not included in the final 

analysis of the data. Deaths were distributed evenly across treatment groups. Necropsy 

determined that all 9 mice died from morbidities not associated with the experimental protocol.  

Discussion 

The novel findings in this study were that inhalation of a Cu-Ni welding fume 

significantly decreased lung tumor size and tumor number in vivo in a two-stage model of lung 

tumorigenesis. While MCA/air-exposed mice averaged 15.57 ± 0.75 tumors per mouse lung, 

MCA/Cu-Ni fume averaged 7.11 ± 0.93 tumors per lung (p < 0.0001). Notably, tumors in 

MCA/air mice averaged over 1 mm in diameter, while tumors in MCA/Cu-Ni appeared much 

smaller on gross examination and averaged just 0.57 mm in diameter (p < 0.0001). To our 

knowledge, this is the first in vivo inhalation study investigating a Cu-Ni welding fume. 

The Cu-Ni welding fume in this study contains ~76% Cu and 12% Ni according to metal 

analysis. Comparatively less studies have investigated the Cu in welding fumes compared to 

other metals like Cr, Ni, and Fe. While some reports have indicated that Cu in welding fumes is a 

respiratory irritant and contributes to metal fume fever, other literature suggests Cu is relatively 

benign in the lungs and does not cause this condition [3, 26]. However, Markert et al. 

investigated the Cu in welding fumes and found that Cu alone was able to increase levels of C 

reactive protein (CRP) [27]. Increases in CRP are believed to represent an early stage of metal 
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fume fever. Additionally, elevated levels of Cu have been found in lung, prostate, breast, and 

brain cancers, and Cu chelators can be useful as anti-cancer therapies [28].  Significantly more 

literature is available investigating Ni in welding fumes, and Ni is classified as carcinogenic to 

humans by the IARC, as supported by many worker and animal studies [3, 8, 29-33]. Many 

studies have shown that Ni can damage DNA directly as well as through reactive oxygen species 

production, epigenetic effects, and chromosomal aberrations [8, 30, 31, 34-40]. Inhalation 

studies in humans and animals have shown that Ni is a lung irritant and can cause inflammation 

as well as adversely affect the immune system [3, 40]. Numerous worker and in vivo studies have 

shown that exposure to Ni-containing stainless-steel welding fumes increases lung cancer risk [3, 

13, 14, 41]. In vitro studies have also shown that the Ni in stainless steel welding fumes may be 

mutagenic [30, 42]. However, because welding fume exposures do not represent pure exposure 

to Ni, this elevated risk cannot be definitely linked to Ni or any other single metal component of 

the fume [3, 31]. Moreover, in 2012, IARC concluded that high cytotoxic concentrations as well 

as the presence of inflammation may be needed to potentially see carcinogenic effects from Ni 

exposures [8, 35, 38, 43, 44]. 

Only two published studies have investigated the pneumotoxicity of a Cu-Ni welding 

fume. Antonini et al. 2014 investigated the pulmonary toxicity of a Cu-Ni based fume generated 

by shielded metal arc welding (SMAW) using both in vitro and in vivo assays [45]. This fume 

only contained trace amounts of Cr and yet caused a persistent increase in lung injury and 

inflammation even greater than SS and MS fumes. Interestingly, the Cu-Ni fume did not increase 

reactive oxygen species (ROS), so it was hypothesized that the toxicity was due to a direct 

cytotoxic effect. An in vitro study by Badding et al. found that the Cu-Ni fume was more 

cytotoxic than SS or MS fume, causing cell death and mitochondrial dysfunction at lower doses 
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than the other fumes [46]. The authors likewise noted that the fume did not cause ROS 

production but did impair ability of exposed macrophages to phagocytose bacteria. Hence, these 

studies suggest that Cu-Ni fume from SMAW may still be toxic and inflammatory in the lungs. 

However, it is important to note that the metal composition of the welding fumes used in these 

studies was more complex than the Cu-Ni fume in this study because it was produced by 

SMAW. The fume in the cited studies contained ~30% potassium and ~21% aluminum with only 

13.4% and 6% Ni and Cu, respectively. Therefore, it is likely the pneumotoxicity of the Cu-Ni 

used in this study would differ.  Additionally, no studies have investigated pneumotoxicity in 

vivo following inhalation exposure to the Cu-Ni fume produced by GMAW.  

It is unclear why the Cu-Ni welding fume decreased lung tumor size and was not a lung 

tumor promoter in this study. However, this study highlights the need for ongoing future research 

investigating Cu-Ni welding fumes. Additional in vivo and in vitro studies can help determine 

the toxicity of this fume and in particular, clarify whether the Cu in welding fumes is beneficial, 

benign, or harmful to worker health. While the results of the present study suggest Cu-Ni 

welding fume may pose a smaller health threat to welders, additional studies are needed to better 

clarify this risk. 
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Figure legends 

Figure 1. Timelines of experimental protocols. Panel A – Experimental protocol for whole 

lung metal analysis. Mice were exposed by whole-body inhalation to filtered air (n = 10) or Cu-

Ni fume (n = 10) for 4 hours. Inductively coupled argon plasma, atomic emission spectroscopy 

was used to analyze metal content of lungs. Panel B - Experimental protocol for two-stage 

(initiation-promotion) bioassay. Mice received MCA (n = 60) or corn oil (n = 60) injections and 

beginning 1 week later were exposed to Cu-Ni fume or air inhalation 4 hours/day x 4 day/week x 

9 weeks before terminal sacrifice at 30 weeks 

Figure 2. Particle size distribution of Cu-Ni welding fume comparing mass concentration versus 

particle size as measured using the MOUDI and Nano-MOUDI impactor systems. 

Figure 3. Panel A - Enhanced dark-field microscopy image of Cu-Ni welding fume deposits 

(arrows) in the alveoli of a mouse 30 weeks after a 9 week inhalation exposure to Cu-Ni fume. 

Panel B - Enhanced dark-field microscopy image showing no deposits in the alveoli of a mouse 

30 weeks after a 9 week inhalation exposure of air. 

Figure 4. Average tumor number per mouse lung (tumor multiplicity) upon gross 

examination in A/J mice following initiation-promotion study at 30 week sacrifice.  

MCA/Cu-Ni fume significantly decreased lung tumor number compared to air controls (7.11 ± 

0.93 and 15.57 ± 0.75, respectively). As expected, mice treated with CO had low tumor number. 

Horizontal bars represent mean tumor numbers per group. Circles = CO/Air, squares = CO/Cu-

Ni fume, upward triangles = MCA/air, downward triangles = MCA/Cu-Ni fume. *p <0.0001 – 

compared to CO/air; **p <0.0001 – compared to MCA/air 
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Figure 5. Gross images of A/J mouse lung exposed to MCA/air (panel A) or MCA/Cu-Ni 

welding fume (panel B). Images represent lung tumor morphology 24-h post-fixation. 

Fixation allows for more accurate enumeration of tumors. Tumors (arrows) were on average ~1 

mm in diameter in MCA/air mice and ~0.5 mm in diameter in MCA/Cu-Ni welding fume 

exposed mice. 
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Figures  

 

Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

Whole lung metal analysis by ICP-AES  
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Figure 2. 
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Tables. 

 

Table 1. Metal composition of Cu-Ni fume 

 

Metals Analyzed Weight % of Metals 

Cu 76.35 

Ni 11.60 

Fe 5.10 

Ti 

 

Mn 

2.86 

 

2.27 

 

GMAW-MS fume was analyzed for aluminum (Al), barium (Ba), calcium (Ca), chromium (Cr), 

cobalt (Co), copper (Cu), iron (Fe), potassium (K), lithium (Li), manganese (Mn), magnesium 

(Mg), nickel (Ni), phosphorus (P), lead (Pb), strontium (Sr), titanium (Ti), vanadium (V), zinc 

(Zn), and zirconium (Zr) by Inductively Coupled Plasma-Atomic Emission Spectroscopy. 

Samples were prepared according to the NIOSH method 7300 for bulk samples. Trace amounts 

(<1%) of Al, Ba, Ca, Co, Cr, K, Li, Mg, P, Pb, Sr, Ti, V, Zn, and Zr were found. Weight % is 

relative to all metals analyzed.  
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Table 2. Lung metal deposition in A/J mice after air or Cu-Ni fume inhalation for 4 hours at a 

concentration of 43 mg/m3  

Exposure Cu (µg/lung) Ni (µg/lung) Fe (µg/lung) Ti (µg/lung) Mn (µg/lung) 

Air 0.30 ± 0.01 0.05 ± 0.02 9.95 ± 0.35 0.04 ± 0.02 0.03 ± 0.00 

Cu-Ni 5.40 ± 0.17 1.23 ± 0.07 10.74 ± 0.27  0.16 ± 0.03 0.16 ± 0.00 

  

Freeze-dried whole lung tissue was analyzed for aluminum (Al), barium (Ba), calcium (Ca), 

chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), potassium (K), lithium (Li), manganese 

(Mn), magnesium (Mg), nickel (Ni), phosphorus (P), lead (Pb), strontium (Sr), titanium (Ti), 

vanadium (V), zinc (Zn), and zirconium (Zr) by Inductively Coupled Plasma-Atomic Emission 

Spectroscopy. Samples were prepared according to the draft NIOSH method 8200 for bulk tissue 

samples. Levels of Al, Ba, Ca, Co, Cr, Li, Mg, P, Pb, Sr, V, Zn and Zr were not included because 

they were not detectable, <0.1% in the fume analysis, or not significantly higher in exposed 

animals. Note:  Values are mean ± standard error of the mean (n=6 air; n=10 Cu-Ni);  
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Table 3. Total and average (in parenthesis) tumor number in A/J mice across each of the 

individual lung lobes following GMAW-MS or air exposure 30 weeks post-initiation with MCA 

or corn oil 

 

 

 

CO – corn oil, Cu-Ni – copper-nickel welding fume, MCA – 3-methylchloanthrene  

*p < 0.0001, ** p < 0.002, ^p < 0.006 – compared to MCA/Cu-Ni 

 

 n Left Apical Cardiac Diaphragmatic Azygos 

CO/air 27 4 (0.15 ± 0.07) 0 1 (0.04 ± 0.04) 2 (0.07 ± 0.05) 1 (0.04 ± 0.04) 

CO/Cu-Ni 29 0 0 0 2 (0.07 ± 0.26) 0 

MCA/air 28 133 (4.75 ± 0.41)* 54 (1.93 ± 0.21)** 68 (2.43 ± 0.31) 127 (4.54 ± 0.38)* 54 (1.93 ± 0.24)^ 

MCA/Cu-Ni 27 52 (1.93 ± 0.29) 24 (0.89 ± 0.21) 51 (1.89 ± 0.32) 38 (1.41 ± 0.28) 27 (1.00 ± 0.22) 
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Chapter 7: Conclusions  

Significant advancements have been made in the field of welding fume toxicology 

research in the past few years. In 2017, welding fumes were officially classified as a Group 1 

carcinogen after being considered possibly carcinogenic to humans (Group 2B) since 1990. 

Epidemiological and worker studies have been important for establishing the connection between 

welding and lung cancer. However, these studies have shown mixed results, which highlights the 

difficulties of epidemiological studies given the potential for confounders like smoking and 

asbestos, the possibility of mixed welding fume exposures, personal safety habits, genetics, and 

other risk factors. Nevertheless, epidemiological studies have demonstrated that welding fume 

exposure poses a serious health risk and highlights the need for controlled scientific studies like 

were presented in this dissertation. 

 Our in vivo studies have demonstrated that many types of welding fumes have toxic and 

tumorigenic potential. We have demonstrated that GMAW-MS, GMAW-SS, and Fe2O3, an iron 

oxide found in many types of welding fumes, promote lung tumor formation in the A/J mouse 

model. We also showed that Fe2O3 was the most pneumotoxic metal oxide compared to NiO or 

Cr2O3/CaCrO4 at doses relevant to their percentages in the fume. However, GMAW-SS was 

more pneumotoxic than any of the individual metal oxides, suggesting there may be a synergistic 

or additive toxicity of the metal oxides when they come together in the fume. In contrast, 

GMAW-MS did not cause significant inflammation or cytotoxicity despite the tumorigenic 

effect. Most surprisingly, we found that a Cu-Ni fume produced by GMAW reduced tumor size 

and tumor number in vivo.  

There are a number of strengths as well as some limitations to this research. Many of 

these studies involved whole body inhalation exposures. In vivo inhalation exposures are most 
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similar to how workers are exposed, and the NIOSH inhalation facility is able to closely monitor 

these exposures to maintain a target welding fume concentration and monitor environmental 

conditions like temperature and gas production. These research projects also utilized a large 

sample size of nearly 1,000 A/J mice across all studies. The A/J mouse is a commonly used 

strain in lung cancer research. These mice develop lung tumors both spontaneously as well as 

rapidly in response to carcinogens following a hyperplasia to adenoma to adenocarcinoma 

progression [1, 2]. Lung tumorigenesis in this model is under complex genetic control involving 

the pulmonary adenoma susceptibility 1 (Pas1) locus and Kras.[3] In humans, Kras mutations 

are common in lung adenocarcinoma [4]. More so, in most cases, both human and A/J mouse 

lung tumors originate from atypical hyperplastic lesions in the periphery of the lung [4-7]. The 

research presented in this dissertation entirely utilized A/J mice and did not investigate 

tumorigenic potential in other strains. However, previous research in our lab comparing A/J mice 

to lung tumor resistant C57BL/6J mice showed that the latter strain had a smaller pneumotoxic 

response to welding fumes while the A/J mice demonstrated a possible tumorigenic effect of 

GMAW-SS fume exposure, making the A/J strain a better model for our studies. The potential 

spontaneous tumor development is a clear limitation to the A/J mouse model; yet, reported 

background tumor incidence is still relatively low at about 65% in 15 month old A/J mice. In our 

two-stage model, the tumor background incidence in control mice was also very low (often 

~20% or less) in 30 week old mice. Regardless, in our studies, we saw clear and profound effects 

on lung tumors in response to welding fumes.  

An additional limitation to this research was the fact that only male mice were used in our 

studies. While welding has traditionally been considered a male-dominated career, more women 

are choosing to enter the field. In a recent study investigating the health of a cohort of welders in 
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Canada, it was found that both sexes appeared to have similar health at first follow-up, although 

women reported higher rates of depression than men.[8] Future studies should continue to 

investigate potential health differences among welders of both sexes. These studies were also 

limited in that we did not use enough different doses to observe clear dose-response effects. 

Additionally, we did not mix exposures to different welding fumes or create combinations of 

metal oxides for dosing which would have enabled us to explore additive or synergistic effects. 

However, given the complications and lack of clarity from epidemiological studies, we sought to 

keep these studies simple and straightforward by beginning our studies with just one sex and 

limited exposure groups.  

Currently, little is known concerning the mechanisms by which welding fumes act as 

lung carcinogens. In 2016, Smith et al. identified 10 key characteristics of human carcinogens, 

with the understanding that most human carcinogens exhibit at least one of these characteristics 

[9]. A recent report from Guyton et al. 2018 reviewed the literature on welding fumes and 

concluded that the two most likely key carcinogenic characteristics of welding fumes include 

their ability to be immunosuppressive and induce chronic inflammation [10]. This classification 

was based on evidence from multiple studies demonstrating increases in lung and systemic 

inflammation biomarkers in welders. However, in vivo studies such as presented in this 

dissertation indicate that not all welding fumes induce overt inflammation; we observed that 

GMAW-SS induced inflammation in A/J mice while GMAW-MS did not. Eight other key 

characteristics of human carcinogens are recognized which could represent mechanisms of 

welding fume tumorigenesis.  These characteristics include electrophilic properties or the ability 

to be metabolically activated, genotoxicity, the ability to alter DNA repair or cause genomic 

instability, induction of epigenetic alterations, induction of oxidative stress, modulating receptor-
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mediated effects, causing immortalization, and altering cell proliferation, cell death, or nutrient 

supply. It is possible welding fumes may cause tumorigenesis through one of these additional 

mechanisms. Future studies in our lab are planned at investigating potential epigenetic effects of 

welding fumes such as the presence of DNA methylation or histone modification. 

The goal of this research is to better understand what welding fumes and component 

metals are most dangerous so that welders can ultimately be protected from adverse respiratory 

health effects like lung cancer, given that ventilation and personal protective equipment such as 

respirators are not sufficient. No ventilation is 100% effective, and there is evidence that some 

respirators are note entirely able to protect welders [11, 12]. More so, many welders do not wear 

personal protective equipment, with a recent study of a cohort of welders from Canada indicating 

that nearly 50% of welders wore no respiratory protection when welding [8]. From a public 

health standpoint, there is a need to inform welders of the risks of welding fume inhalation and 

offer them enhanced protection in the workplace. The research in this dissertation as well as 

ongoing studies will be significant in clarifying which welding fumes and their metal 

constituents are most hazardous to worker health. This understanding could more appropriately 

guide worksite regulations regarding safe levels of welding fumes or component metals and help 

lead to the creation of welding consumables that are devoid of the more hazardous metal oxide 

components. With a better understanding of the hazardous components of the fume, we can 

better protect or prevent exposure in welders and hopefully reduce lung cancer rates in this 

occupation.    
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